Abstract

Squeezed states of the electromagnetic field are generated by degenerate parametric downconversion in a sub-threshold optical parametric oscillator. Reductions in photocurrent noise greater than 60% (−4 dB) below the limit set by the vacuum fluctuations of the field are observed in a balanced homodyne detector. A quantitative comparison with theory suggests that the observed noise reductions result from a field that in the absence of avoidable linear attenuation would be squeezed more than tenfold. A degree of squeezing of approximately fivefold is inferred for the actual field emitted through one mirror of the optical parametric oscillator. An explicit demonstration of the Heisenberg uncertainty principle for the electromagnetic field is made from the measurements, which show that the field state produced by the downconversion process is a state of minimum uncertainty.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription