Abstract

Nonlinear optical (NLO) properties of materials can be enhanced by assembling them as thin polymer composite films alternating with other polymers and forming dielectric mirrors, 1D photonic crystals (1DPCs), wherein the input light intensity is increased. Based on the poly(vinyl carbazole) (PVK) and poly(vinyl alcohol) (PVA) contrasting polymer pair, variants of such structures, with graphene and fullerene in their high-index layers, have been produced. Their optical switching characteristics have been studied with ns, cw, and quasi-cw fs laser sources in the IR and with a fs laser in the visible range. We have demonstrated slow optical bistability in the polymeric 1DPCs determined by the thermal expansion of polymer composites at intensities over ${100}\;{\rm W}/{{\rm cm}^2}$ as well as fast and ultrafast optical switching due to thermo-optic and Kerr nonlinearities, respectively. Characteristic nonlinear refractive coefficients responsible for these processes were found to be $n_2^{\rm to}\sim{{10}^{- 1}}\;{\rm cm}^2/{\rm GW}$ and $n_2^{\rm Kerr}\sim{{10}^{- 4}}\;{\rm cm}^2/{\rm GW}$. A subpicosecond fast spectral shift of the 1DPC bandgap has been found. Our results and analysis provide a clear picture of the NLO behavior of 1DPCs at different time scales. The results stimulate the subsequent design of ultrafast switches and bistable memory cells based on polymeric 1DPCs whose micrometer thickness and flexibility offer promise for implementation into fiber and microchip configurations.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly efficient photorefractive composites based on layered photoconductive polymers

O-Pil Kwon, Suck-Hyun Lee, Germano Montemezzani, and Peter Günter
J. Opt. Soc. Am. B 20(11) 2307-2312 (2003)

Bistable absorption in a 1D photonic crystal with a nanocomposite defect layer

Samad Roshan Entezar
Appl. Opt. 60(27) 8445-8452 (2021)

Third-order nonlinear optical susceptibility of polymers based on carbazole derivatives

Izabela Fuks, Beata Derkowska, Bouchta Sahraoui, Stanislaw Niziol, Jerzy Sanetra, Dariusz Bogdal, and Jan Pielichowski
J. Opt. Soc. Am. B 19(1) 89-93 (2002)

References

  • View by:

  1. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
    [Crossref]
  2. T. Alexoudi, G. T. Kanellos, and N. Pleros, “Optical RAM and integrated optical memories: a survey,” Light Sci. Appl. 9, 91 (2020).
    [Crossref]
  3. D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7, 021306 (2020).
    [Crossref]
  4. B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
    [Crossref]
  5. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
    [Crossref]
  6. H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
    [Crossref]
  7. A. A. Ryzhov, Y. Wang, H. Qi, and J. Wang, “Optical limiting properties of a nonlinear multilayer Fabry-Perot resonator containing niobium pentoxide as nonlinear medium,” Opt. Lett. 39, 4847–4850 (2014).
    [Crossref]
  8. J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
    [Crossref]
  9. A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20, R41–R56 (2005).
    [Crossref]
  10. J. Shiri, J. Khalilzadeh, and S. H. Asadpour, “Optical bistability in reflection of the laser pulse in a 1D photonic crystal doped with four-level InGaN/GaN quantum dots,” Laser Phys. 31, 036202 (2021).
    [Crossref]
  11. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
    [Crossref]
  12. T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2018).
    [Crossref]
  13. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191–22197 (2011).
    [Crossref]
  14. S. Zhang, C. Shen, I. M. Kislyakov, N. Dong, A. Ryzhov, X. Zhang, I. M. Belousova, J.-M. Nunzi, and J. Wang, “Photonic-crystal-based broadband graphene saturable absorber,” Opt. Lett. 44, 4785–4788 (2019).
    [Crossref]
  15. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
    [Crossref]
  16. M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions,” ACS Nano 4, 3155–3162 (2010).
    [Crossref]
  17. I. M. Kislyakov, J.-M. Nunzi, X. Zhang, Y. Xie, V. N. Bocharov, and J. Wang, “Stimulated Brillouin scattering in dispersed graphene,” Opt. Express 26, 34346 (2018).
    [Crossref]
  18. G. Wypych, Handbook of Polymers, 2nd ed. (ChemTech, 2016).
  19. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6, 910 (1989).
    [Crossref]
  20. M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
    [Crossref]
  21. V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
    [Crossref]
  22. S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
    [Crossref]
  23. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
    [Crossref]
  24. A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
    [Crossref]
  25. N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
    [Crossref]
  26. E. Hecht, Optics (Addison Wesley, 2002), Chap. 9.
  27. R. Weigand, M. Sánchez-Balmaseda, S. M. Afanador-Delgado, and H. J. Salavagione, “Nonlinear thermal and electronic optical properties of graphene in N-methylpyrrolidone at 800 nm with femtosecond laser pulses,” J. Appl. Phys. 124, 033104 (2018).
    [Crossref]
  28. A. D. Grishina, T. V. Krivenko, V. V. Savel’ev, R. W. Rychwalski, and A. V. Vannikov, “Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene,” High Energy Chem. 47, 46–52 (2013).
    [Crossref]
  29. V. Pilla, T. Catunda, D. T. Balogh, R. M. Faria, and S. C. Zilio, “Thermal lensing in poly(vinyl alcohol)/polyaniline blends,” J. Polym. Sci. B 40, 1949–1956 (2002).
    [Crossref]
  30. V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
    [Crossref]
  31. V. I. Sviridenko, V. A. Medvedev, N. P. Rybkin, and V. G. Gorbunova, “The thermal conductivity of KV fused silica at 2–300°K,” Meas. Tech. 30, 454–458 (1987).
    [Crossref]
  32. D. J. Hilton, “Ultrafast pump-probe spectroscopy,” in Optical Techniques for Solid-State Materials Characterization, R. P. Prasankumar and A. J. Taylor, eds. (CRC Press, 2012).
  33. B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81, 2701–2703 (2002).
    [Crossref]
  34. W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
    [Crossref]
  35. S. Dey, S. R. Bongu, V. K. Sagar, and P. B. Bisht, “Investigation of thermal nonlinearity due to nJ high repetition rate fs pulses on wrinkled graphene,” J. Opt. Soc. Am. B 38, 2019–2026 (2021).
    [Crossref]

2021 (3)

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

J. Shiri, J. Khalilzadeh, and S. H. Asadpour, “Optical bistability in reflection of the laser pulse in a 1D photonic crystal doped with four-level InGaN/GaN quantum dots,” Laser Phys. 31, 036202 (2021).
[Crossref]

S. Dey, S. R. Bongu, V. K. Sagar, and P. B. Bisht, “Investigation of thermal nonlinearity due to nJ high repetition rate fs pulses on wrinkled graphene,” J. Opt. Soc. Am. B 38, 2019–2026 (2021).
[Crossref]

2020 (3)

T. Alexoudi, G. T. Kanellos, and N. Pleros, “Optical RAM and integrated optical memories: a survey,” Light Sci. Appl. 9, 91 (2020).
[Crossref]

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7, 021306 (2020).
[Crossref]

J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
[Crossref]

2019 (1)

2018 (4)

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2018).
[Crossref]

I. M. Kislyakov, J.-M. Nunzi, X. Zhang, Y. Xie, V. N. Bocharov, and J. Wang, “Stimulated Brillouin scattering in dispersed graphene,” Opt. Express 26, 34346 (2018).
[Crossref]

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
[Crossref]

R. Weigand, M. Sánchez-Balmaseda, S. M. Afanador-Delgado, and H. J. Salavagione, “Nonlinear thermal and electronic optical properties of graphene in N-methylpyrrolidone at 800 nm with femtosecond laser pulses,” J. Appl. Phys. 124, 033104 (2018).
[Crossref]

2017 (1)

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

2014 (3)

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

A. A. Ryzhov, Y. Wang, H. Qi, and J. Wang, “Optical limiting properties of a nonlinear multilayer Fabry-Perot resonator containing niobium pentoxide as nonlinear medium,” Opt. Lett. 39, 4847–4850 (2014).
[Crossref]

2013 (2)

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

A. D. Grishina, T. V. Krivenko, V. V. Savel’ev, R. W. Rychwalski, and A. V. Vannikov, “Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene,” High Energy Chem. 47, 46–52 (2013).
[Crossref]

2011 (1)

2010 (1)

M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions,” ACS Nano 4, 3155–3162 (2010).
[Crossref]

2005 (1)

A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20, R41–R56 (2005).
[Crossref]

2004 (1)

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

2002 (2)

V. Pilla, T. Catunda, D. T. Balogh, R. M. Faria, and S. C. Zilio, “Thermal lensing in poly(vinyl alcohol)/polyaniline blends,” J. Polym. Sci. B 40, 1949–1956 (2002).
[Crossref]

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81, 2701–2703 (2002).
[Crossref]

2000 (2)

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[Crossref]

1991 (1)

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

1989 (1)

1987 (1)

V. I. Sviridenko, V. A. Medvedev, N. P. Rybkin, and V. G. Gorbunova, “The thermal conductivity of KV fused silica at 2–300°K,” Meas. Tech. 30, 454–458 (1987).
[Crossref]

1982 (2)

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[Crossref]

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

1979 (1)

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

1976 (1)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

Acharyya, J. N.

J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
[Crossref]

Adnan, M.

J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
[Crossref]

Afanador-Delgado, S. M.

R. Weigand, M. Sánchez-Balmaseda, S. M. Afanador-Delgado, and H. J. Salavagione, “Nonlinear thermal and electronic optical properties of graphene in N-methylpyrrolidone at 800 nm with femtosecond laser pulses,” J. Appl. Phys. 124, 033104 (2018).
[Crossref]

al Kouki, F.

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

Alexoudi, T.

T. Alexoudi, G. T. Kanellos, and N. Pleros, “Optical RAM and integrated optical memories: a survey,” Light Sci. Appl. 9, 91 (2020).
[Crossref]

Altantzis, T.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Altman, D. H.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Asadpour, S. H.

J. Shiri, J. Khalilzadeh, and S. H. Asadpour, “Optical bistability in reflection of the laser pulse in a 1D photonic crystal doped with four-level InGaN/GaN quantum dots,” Laser Phys. 31, 036202 (2021).
[Crossref]

Aspnes, D. E.

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[Crossref]

Balogh, D. T.

V. Pilla, T. Catunda, D. T. Balogh, R. M. Faria, and S. C. Zilio, “Thermal lensing in poly(vinyl alcohol)/polyaniline blends,” J. Polym. Sci. B 40, 1949–1956 (2002).
[Crossref]

Bals, S.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Belousova, I. M.

Benchaabane, A.

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

Bennink, R. S.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Bermudez, V.

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

Bethune, D. S.

Bhaskaran, H.

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

Bi, K.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Bisht, P. B.

Bocharov, V. N.

Bogdal, D.

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

Bongu, S. R.

Bouchriha, H.

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

Bougher, T. L.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Boyd, R. W.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Burgess, I. B.

Cai, Y.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Catunda, T.

V. Pilla, T. Catunda, D. T. Balogh, R. M. Faria, and S. C. Zilio, “Thermal lensing in poly(vinyl alcohol)/polyaniline blends,” J. Polym. Sci. B 40, 1949–1956 (2002).
[Crossref]

Chang, S.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Chen, W.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Chong, Y.

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7, 021306 (2020).
[Crossref]

Cola, B. A.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Coleman, J. N.

M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions,” ACS Nano 4, 3155–3162 (2010).
[Crossref]

Cowan, A. R.

A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20, R41–R56 (2005).
[Crossref]

De, S.

M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions,” ACS Nano 4, 3155–3162 (2010).
[Crossref]

Dey, S.

Dong, N.

S. Zhang, C. Shen, I. M. Kislyakov, N. Dong, A. Ryzhov, X. Zhang, I. M. Belousova, J.-M. Nunzi, and J. Wang, “Photonic-crystal-based broadband graphene saturable absorber,” Opt. Lett. 44, 4785–4788 (2019).
[Crossref]

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
[Crossref]

Duesberg, G. S.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
[Crossref]

Dulle, M.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Eklund, P. C.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Fang, J.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Faria, R. M.

V. Pilla, T. Catunda, D. T. Balogh, R. M. Faria, and S. C. Zilio, “Thermal lensing in poly(vinyl alcohol)/polyaniline blends,” J. Polym. Sci. B 40, 1949–1956 (2002).
[Crossref]

Ferreira de Lima, T.

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

Fery, A.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Floyd, D. L.

Formanek, P.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Förster, S.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Fryett, T.

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2018).
[Crossref]

Gan, F. X.

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81, 2701–2703 (2002).
[Crossref]

Gangineni, R. B.

J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
[Crossref]

Gatensby, R.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
[Crossref]

Gattuso, T. R.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Gibbs, H. M.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[Crossref]

Gorbunova, V. G.

V. I. Sviridenko, V. A. Medvedev, N. P. Rybkin, and V. G. Gorbunova, “The thermal conductivity of KV fused silica at 2–300°K,” Meas. Tech. 30, 454–458 (1987).
[Crossref]

Gossard, A. C.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Grishina, A. D.

A. D. Grishina, T. V. Krivenko, V. V. Savel’ev, R. W. Rychwalski, and A. V. Vannikov, “Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene,” High Energy Chem. 47, 46–52 (2013).
[Crossref]

Hager, T.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Hamed, Z. B.

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002), Chap. 9.

Henry, A.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Hilton, D. J.

D. J. Hilton, “Ultrafast pump-probe spectroscopy,” in Optical Techniques for Solid-State Materials Characterization, R. P. Prasankumar and A. J. Taylor, eds. (CRC Press, 2012).

Holden, J. M.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Jewell, J. L.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

Jia, H.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Kajzar, F.

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

Kanellos, G. T.

T. Alexoudi, G. T. Kanellos, and N. Pleros, “Optical RAM and integrated optical memories: a survey,” Light Sci. Appl. 9, 91 (2020).
[Crossref]

Khalilzadeh, J.

J. Shiri, J. Khalilzadeh, and S. H. Asadpour, “Optical bistability in reflection of the laser pulse in a 1D photonic crystal doped with four-level InGaN/GaN quantum dots,” Laser Phys. 31, 036202 (2021).
[Crossref]

Khan, U.

M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions,” ACS Nano 4, 3155–3162 (2010).
[Crossref]

King, P. J.

M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions,” ACS Nano 4, 3155–3162 (2010).
[Crossref]

Kislyakov, I. M.

Kivshar, Y.

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7, 021306 (2020).
[Crossref]

König, T. A. F.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Krivenko, T. V.

A. D. Grishina, T. V. Krivenko, V. V. Savel’ev, R. W. Rychwalski, and A. V. Vannikov, “Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene,” High Energy Chem. 47, 46–52 (2013).
[Crossref]

Kuttner, C.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Lee, W.-T.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Lepeshkin, N. N.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Leykam, D.

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7, 021306 (2020).
[Crossref]

Li, Y.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
[Crossref]

Loncar, M.

Lotya, M.

M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions,” ACS Nano 4, 3155–3162 (2010).
[Crossref]

Lv, W.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Majumdar, A.

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2018).
[Crossref]

Mayer, M.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

McCall, S. L.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

McEvoy, N.

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
[Crossref]

McMenamin, S. A.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

McRae, E.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Medvedev, V. A.

V. I. Sviridenko, V. A. Medvedev, N. P. Rybkin, and V. G. Gorbunova, “The thermal conductivity of KV fused silica at 2–300°K,” Meas. Tech. 30, 454–458 (1987).
[Crossref]

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[Crossref]

Ni, H. F.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Niziol, J.

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

Niziol, S.

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

Nunzi, J.-M.

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[Crossref]

Passner, A.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Pernice, W. H. P.

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

Pettes, M. T.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Pielichowski, J.

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

Pilla, V.

V. Pilla, T. Catunda, D. T. Balogh, R. M. Faria, and S. C. Zilio, “Thermal lensing in poly(vinyl alcohol)/polyaniline blends,” J. Polym. Sci. B 40, 1949–1956 (2002).
[Crossref]

Piredda, G.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Pleros, N.

T. Alexoudi, G. T. Kanellos, and N. Pleros, “Optical RAM and integrated optical memories: a survey,” Light Sci. Appl. 9, 91 (2020).
[Crossref]

Prakash, G. V.

J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
[Crossref]

Prucnal, P. R.

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

Qi, H.

Qi, J.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Qin, S.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Quan, Q.

Raghavendar, C.

J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
[Crossref]

Rao, A. M.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Rao, D. N.

J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
[Crossref]

Ren, S. L.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Resler, D. P.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Rybkin, N. P.

V. I. Sviridenko, V. A. Medvedev, N. P. Rybkin, and V. G. Gorbunova, “The thermal conductivity of KV fused silica at 2–300°K,” Meas. Tech. 30, 454–458 (1987).
[Crossref]

Rychwalski, R. W.

A. D. Grishina, T. V. Krivenko, V. V. Savel’ev, R. W. Rychwalski, and A. V. Vannikov, “Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene,” High Energy Chem. 47, 46–52 (2013).
[Crossref]

Ryzhov, A.

Ryzhov, A. A.

Sagar, V. K.

Salavagione, H. J.

R. Weigand, M. Sánchez-Balmaseda, S. M. Afanador-Delgado, and H. J. Salavagione, “Nonlinear thermal and electronic optical properties of graphene in N-methylpyrrolidone at 800 nm with femtosecond laser pulses,” J. Appl. Phys. 124, 033104 (2018).
[Crossref]

Sánchez-Balmaseda, M.

R. Weigand, M. Sánchez-Balmaseda, S. M. Afanador-Delgado, and H. J. Salavagione, “Nonlinear thermal and electronic optical properties of graphene in N-methylpyrrolidone at 800 nm with femtosecond laser pulses,” J. Appl. Phys. 124, 033104 (2018).
[Crossref]

Sandhage, K. H.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Sanetra, J.

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

Sanhoury, M. A.

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

Savel’ev, V. V.

A. D. Grishina, T. V. Krivenko, V. V. Savel’ev, R. W. Rychwalski, and A. V. Vannikov, “Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene,” High Energy Chem. 47, 46–52 (2013).
[Crossref]

Schnepf, M. J.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Schweinsberg, A.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Selegue, J.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Shastri, B. J.

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

Shen, C.

Shi, L.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Shiri, J.

J. Shiri, J. Khalilzadeh, and S. H. Asadpour, “Optical bistability in reflection of the laser pulse in a 1D photonic crystal doped with four-level InGaN/GaN quantum dots,” Laser Phys. 31, 036202 (2021).
[Crossref]

Singh, V.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Smirnova, D.

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7, 021306 (2020).
[Crossref]

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[Crossref]

Sviridenko, V. I.

V. I. Sviridenko, V. A. Medvedev, N. P. Rybkin, and V. G. Gorbunova, “The thermal conductivity of KV fused silica at 2–300°K,” Meas. Tech. 30, 454–458 (1987).
[Crossref]

Tai, K.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

Tait, A. N.

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

Tang, S. K. Y.

Tarng, S. S.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

Tebbe, M.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Vannikov, A. V.

A. D. Grishina, T. V. Krivenko, V. V. Savel’ev, R. W. Rychwalski, and A. V. Vannikov, “Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene,” High Energy Chem. 47, 46–52 (2013).
[Crossref]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

Wang, C.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Wang, G.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Wang, J.

Wang, K. A.

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Wang, L.

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Wang, Y.

A. A. Ryzhov, Y. Wang, H. Qi, and J. Wang, “Optical limiting properties of a nonlinear multilayer Fabry-Perot resonator containing niobium pentoxide as nonlinear medium,” Opt. Lett. 39, 4847–4850 (2014).
[Crossref]

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

Weathers, A.

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[Crossref]

Weigand, R.

R. Weigand, M. Sánchez-Balmaseda, S. M. Afanador-Delgado, and H. J. Salavagione, “Nonlinear thermal and electronic optical properties of graphene in N-methylpyrrolidone at 800 nm with femtosecond laser pulses,” J. Appl. Phys. 124, 033104 (2018).
[Crossref]

Weinberger, D. A.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

Wiegmann, W.

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Wolf, D.

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Wright, C. D.

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

Wypych, G.

G. Wypych, Handbook of Polymers, 2nd ed. (ChemTech, 2016).

Xia, H. P.

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81, 2701–2703 (2002).
[Crossref]

Xie, Y.

Young, J. F.

A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20, R41–R56 (2005).
[Crossref]

Yu, B. L.

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81, 2701–2703 (2002).
[Crossref]

Zeinert, A.

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

Zellama, K.

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

Zhan, A.

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2018).
[Crossref]

Zhang, S.

S. Zhang, C. Shen, I. M. Kislyakov, N. Dong, A. Ryzhov, X. Zhang, I. M. Belousova, J.-M. Nunzi, and J. Wang, “Photonic-crystal-based broadband graphene saturable absorber,” Opt. Lett. 44, 4785–4788 (2019).
[Crossref]

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
[Crossref]

Zhang, X.

Zhu, C. S.

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81, 2701–2703 (2002).
[Crossref]

Zilio, S. C.

V. Pilla, T. Catunda, D. T. Balogh, R. M. Faria, and S. C. Zilio, “Thermal lensing in poly(vinyl alcohol)/polyaniline blends,” J. Polym. Sci. B 40, 1949–1956 (2002).
[Crossref]

ACS Nano (1)

M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions,” ACS Nano 4, 3155–3162 (2010).
[Crossref]

ACS Photon. (1)

N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, and J. Wang, “Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory,” ACS Photon. 5, 1558–1565 (2018).
[Crossref]

Adv. Mater. Interfaces (1)

J. N. Acharyya, D. N. Rao, M. Adnan, C. Raghavendar, R. B. Gangineni, and G. V. Prakash, “Giant optical nonlinearities of photonic minibands in metal-dielectric multilayers,” Adv. Mater. Interfaces 7, 2000035 (2020).
[Crossref]

AIP Adv. (1)

W. Chen, G. Wang, S. Qin, C. Wang, J. Fang, J. Qi, X. Zhang, L. Wang, H. Jia, and S. Chang, “The nonlinear optical properties of coupling and decoupling graphene layers,” AIP Adv. 3, 042123 (2013).
[Crossref]

Appl. Phys. Lett. (4)

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81, 2701–2703 (2002).
[Crossref]

S. L. Ren, Y. Wang, A. M. Rao, E. McRae, J. M. Holden, T. Hager, K. A. Wang, W.-T. Lee, H. F. Ni, J. Selegue, and P. C. Eklund, “Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films,” Appl. Phys. Lett. 59, 2678–2680 (1991).
[Crossref]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

H. M. Gibbs, S. S. Tarng, J. L. Jewell, D. A. Weinberger, K. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs-GaAIAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[Crossref]

Appl. Phys. Rev. (1)

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7, 021306 (2020).
[Crossref]

High Energy Chem. (1)

A. D. Grishina, T. V. Krivenko, V. V. Savel’ev, R. W. Rychwalski, and A. V. Vannikov, “Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene,” High Energy Chem. 47, 46–52 (2013).
[Crossref]

J. Appl. Phys. (2)

A. Benchaabane, Z. B. Hamed, F. al Kouki, M. A. Sanhoury, K. Zellama, A. Zeinert, and H. Bouchriha, “Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites,” J. Appl. Phys. 115, 134313 (2014).
[Crossref]

R. Weigand, M. Sánchez-Balmaseda, S. M. Afanador-Delgado, and H. J. Salavagione, “Nonlinear thermal and electronic optical properties of graphene in N-methylpyrrolidone at 800 nm with femtosecond laser pulses,” J. Appl. Phys. 124, 033104 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Polym. Sci. B (1)

V. Pilla, T. Catunda, D. T. Balogh, R. M. Faria, and S. C. Zilio, “Thermal lensing in poly(vinyl alcohol)/polyaniline blends,” J. Polym. Sci. B 40, 1949–1956 (2002).
[Crossref]

Laser Phys. (1)

J. Shiri, J. Khalilzadeh, and S. H. Asadpour, “Optical bistability in reflection of the laser pulse in a 1D photonic crystal doped with four-level InGaN/GaN quantum dots,” Laser Phys. 31, 036202 (2021).
[Crossref]

Light Sci. Appl. (1)

T. Alexoudi, G. T. Kanellos, and N. Pleros, “Optical RAM and integrated optical memories: a survey,” Light Sci. Appl. 9, 91 (2020).
[Crossref]

Meas. Tech. (1)

V. I. Sviridenko, V. A. Medvedev, N. P. Rybkin, and V. G. Gorbunova, “The thermal conductivity of KV fused silica at 2–300°K,” Meas. Tech. 30, 454–458 (1987).
[Crossref]

Nanophotonics (1)

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” Nanophotonics 7, 355–370 (2018).
[Crossref]

Nanoscale (1)

M. J. Schnepf, M. Mayer, C. Kuttner, M. Tebbe, D. Wolf, M. Dulle, T. Altantzis, P. Formanek, S. Förster, S. Bals, T. A. F. König, and A. Fery, “Nanorattles with tailored electric field enhancement,” Nanoscale 9, 9376–9385 (2017).
[Crossref]

Nat. Nanotechnol. (1)

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, and B. A. Cola, “High thermal conductivity of chain-oriented amorphous polythiophene,” Nat. Nanotechnol. 9, 385–390 (2014).
[Crossref]

Nat. Photonics (1)

B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence and neuromorphic computing,” Nat. Photonics 15, 102–114 (2021).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[Crossref]

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004).
[Crossref]

Proc. SPIE (1)

V. Bermudez, F. Kajzar, S. Niziol, J. Niziol, J. Pielichowski, J. Sanetra, and D. Bogdal, “Linear and nonlinear optical properties of polyvinyl carbazaol and polyvinyl carbazol substitued thin films,” Proc. SPIE 4106, 165–176 (2000).
[Crossref]

Science (1)

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000).
[Crossref]

Semicond. Sci. Technol. (1)

A. R. Cowan and J. F. Young, “Nonlinear optics in high refractive index contrast periodic structures,” Semicond. Sci. Technol. 20, R41–R56 (2005).
[Crossref]

Thin Solid Films (1)

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[Crossref]

Other (3)

E. Hecht, Optics (Addison Wesley, 2002), Chap. 9.

D. J. Hilton, “Ultrafast pump-probe spectroscopy,” in Optical Techniques for Solid-State Materials Characterization, R. P. Prasankumar and A. J. Taylor, eds. (CRC Press, 2012).

G. Wypych, Handbook of Polymers, 2nd ed. (ChemTech, 2016).

Supplementary Material (1)

NameDescription
Supplement 1       Calculation of the electrostriction effect in PC1.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Absorption spectra of Gr-PVK toluene and $ C_{60} $ benzene suspensions used for 1DPCs preparation.
Fig. 2.
Fig. 2. 1DPCs and their transmission spectra.
Fig. 3.
Fig. 3. Simulated spectra and light field intensity distributions at $\lambda = {1064}\;{\rm nm}$ for (a), (b) PC1, (c), (d) PC2, and (e), (f) PC3, respectively.
Fig. 4.
Fig. 4. Open-aperture Z-scan at 1064 nm of (a) PC1 and (b) PC2 at different input energies $ E_p $ (shown in the legends). (c) Input intensity dependence of the effective nonlinear absorption coefficients for PC1 and PC2. (d) Fitting of the spectrum of PC1 by the Fabry–Perot transmission functions.
Fig. 5.
Fig. 5. Cw I-scan: normalized transmittance of (a), (c) PC1 in different intensity ranges, (b) PC2, (d), (e) PC3 in different intensity ranges, and (f) normalized reflectance of PC3.
Fig. 6.
Fig. 6. (a) Z-scan curves of PC1 at different laser wavelengths. (b) Spectrum of its nonlinear absorption coefficient (red curve) in comparision with the linear transmittance (blue curve) extracted from the Z-scan experiment.
Fig. 7.
Fig. 7. Oscillograms of the amplitude-modulated signal transmitted through (a) PC1 and (b) PC3, coupled with the laser cavity.
Fig. 8.
Fig. 8. Transmittance in fs I-scan of 1DPCs at (a) 520 nm and (b) 1040 nm. The legend is valid for both plots.
Fig. 9.
Fig. 9. (a) Transient spectra of PC2 obtained at ${I_{\rm pump}} = {23}\;{\rm GW}/{{\rm cm}^2}$. (b) Time profile of the marked triangle area.

Tables (4)

Tables Icon

Table 1. Linear Characteristics of 1DPCs

Tables Icon

Table 2. Phase Factor and NLO Parameters: Second-Order Saturation Intensity, Effective Nonlinear Absorption Coefficient, and the Resulting Nonlinear Refractive Index of PC1 and PC2 at λ = 1064 n m

Tables Icon

Table 3. NLO Characteristics of 1DPCs Obtained from fs I-Scan at 520 nm

Tables Icon

Table 4. NLO Effects Observed in the 1DPCs and Their Typical Characteristics

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

n = n P V K 1 + 2 f C 60 Δ r ε 1 f C 60 Δ r ε , Δ r ε = ε C 60 ε P V K ε C 60 + 2 ε P V K ,
dI ( z ) d z = α I ( z ) ( 1 + ( I ( z ) I s a t , α ) n α ) 1 β e f f I ( z ) 2 ( 1 + ( I ( z ) I s a t , β ) n β ) 1 ,
I ( z ) = E p π w 0 2 τ p ( π 2 w 0 4 + z 2 λ 2 ) .
T F P I ( λ ) = T o u t 1 + F sin 2 [ δ 0 ( λ ) ] .
n ( I ) = n 0 + n 2 I ,
T F P I ( λ , I ) = T o u t 1 + F sin 2 [ δ 0 ( λ ) + δ N L ( λ ) I ] ,
δ N L ( λ ) = 2 π λ n 2 L .
T n o r m 1 F sin ( 2 δ 0 ) 1 + F sin 2 ( δ 0 ) δ N L I .
T n o r m = m = 0 ( 1 ) m ( m + 1 ) 3 / 2 ( β e f f L e f f I ) m , L e f f = ( 1 e α L ) / α .
n 2 λ 4 π 2 f β e f f .
Δ λ = 2 ( l 1 d s 1 d θ + l 2 d s 2 d θ ) Δ θ .
q + = I ( 1 e σ G r ρ G r p N l 1 ) σ G r ρ G r p N l 1 I ,
q = Δ θ ( N l 1 λ 1 + N l 2 λ 2 + R P Q + l 3 λ 3 ) ,
Δ θ = σ G r ρ G r p N l 1 I ( N l 1 λ 1 + N l 2 λ 2 + R P Q + l 3 λ 3 ) .
β t e 2 2 L e f f T l i n d T d I = 2 2 L e f f T l i n d T d λ d λ d θ d θ d I .
S ( t ) = A e t / τ d ( 1 e t / τ R ) [ 1 + e r f ( τ p 2 τ d t 2 τ p ) ] ,
n 2 Δ λ 2 N l 1 I .

Metrics