Abstract

Graphene-based metasurface nearly perfect absorbers (MPAs) can be used as an efficient tool for the active control and manipulation of waves in the terahertz (THz) gap. Here, we propose a novel, to the best of our knowledge, graphene-based MPA that is designed based on a simple configuration and is capable of absorbing THz radiation within a broad bandwidth of almost 3 THz with polarization-insensitive and omnidirectional characteristics. The MPA comprises a periodic array of graphene patches with two different dimensions that are separated from a gold bottom reflector with an ${{\rm SiO} _2}$ spacer layer. The broadband spectral response of the MPA, which is also verified by analytical calculations, is due to the support of propagating surface plasmon excitations and can be either actively tuned via changes in the chemical potential of graphene or passively adjusted by the modification of the geometrical parameters of the patches and thickness of the spacer layer. As a complement to the previous studies in the literature, due to the simplicity of its design and broad spectral response, it is believed that the suggested graphene-based MPA will find potential applications in THz spectroscopy and communications.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Dual-broadband and single ultrawideband absorbers from the terahertz to infrared regime

Saeedeh Barzegar-Parizi, Amir Ebrahimi, and Kamran Ghorbani
J. Opt. Soc. Am. B 38(9) 2628-2637 (2021)

Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene

Chunyu Zhang, Heng Zhang, Fang Ling, and Bin Zhang
Appl. Opt. 60(16) 4835-4840 (2021)

Tunable broadband terahertz absorber based on a single-layer graphene metasurface

Juzheng Han and Rushan Chen
Opt. Express 28(20) 30289-30298 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Data Availability

The data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription