Abstract

Opening the terahertz electromagnetic band to a wealth of applications still requires the development of new devices. For example, effective means to filter, modulate, and route terahertz beams are still required for terahertz communications, spectroscopy, and sensing to achieve their promise. In particular, metasurfaces are widely discussed for future 6G wireless communications systems. These applications, however, will also require new functionality, such as the ability to design structures enabling a more complex spectral response. Here we outline systematic design principles to realize the polarization-independent electromagnetically induced transparency-like effect in a class of planar terahertz metamaterials that can be fabricated using commonly available processes and whose structural parameters can be flexibly varied to provide wide tuning of the transparency windows within the broader absorption band. We also show how the basic concept can be used to achieve dual transparency bands.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Analogue of electromagnetically induced transparency in a metal-dielectric bilayer terahertz metamaterial

Yang Yue, Fengyan He, Lingling Chen, Fangzhou Shu, Xufeng Jing, and Zhi Hong
Opt. Express 29(14) 21810-21819 (2021)

Tunable electromagnetically induced transparency metamaterial based on solid-state plasma: from a narrow band to a broad one

Quanfang Chen, Fenying Li, Dan Zhang, and Haifeng Zhang
J. Opt. Soc. Am. B 38(5) 1571-1578 (2021)

References

  • View by:

  1. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  2. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
    [Crossref]
  3. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2010).
    [Crossref]
  4. S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).
  5. M. Islam, J. M. Rao, G. Kumar, B. P. Dal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7, 7355 (2017).
    [Crossref]
  6. H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
    [Crossref]
  7. J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4, 627–631 (2010).
    [Crossref]
  8. Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
    [Crossref]
  9. K. Strecker, S. Ekin, and J. F. O’Hara, “Compensating atmospheric channel dispersion for terahertz wireless communication,” Sci. Rep. 10, 5816 (2020).
    [Crossref]
  10. M. Okano and S. Watanabe, “Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy,” Sci. Rep. 6, 39079 (2016).
    [Crossref]
  11. M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
    [Crossref]
  12. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
    [Crossref]
  13. J. Dong, A. Locquet, and D. S. Citrin, “Global mapping of an old-master painting using sparcity-based terahertz reflectometry,” Sci. Rep. 7, 15098 (2017).
    [Crossref]
  14. F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
    [Crossref]
  15. L. Bariah, “A prospective look: key enabling technologies, applications and open research topics in 6G networks,” IEEE Access 8, 174792 (2020).
    [Crossref]
  16. G. C. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun. 28, 106–113 (2021).
    [Crossref]
  17. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
    [Crossref]
  18. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
    [Crossref]
  19. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [Crossref]
  20. A. V. Kabashin, P. Evans, and S. Pastkovsky, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [Crossref]
  21. G. Dolling, C. Enkrich, and M. Wegener, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2006).
    [Crossref]
  22. M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
    [Crossref]
  23. M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007).
    [Crossref]
  24. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [Crossref]
  25. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  26. Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100, 2271–2285 (2012).
    [Crossref]
  27. R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54, 2113–2130 (2006).
    [Crossref]
  28. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99, 171915 (2011).
    [Crossref]
  29. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 77–81 (2015).
    [Crossref]
  30. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
    [Crossref]
  31. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  32. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [Crossref]
  33. A. Kocharovskaya and Ya. I. Khanin, “Population trapping and coherent bleaching of a three-level medium by a periodic train of ultrashort pulses,” Sov. Phys. JETP 63, 945 (1986).
  34. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [Crossref]
  35. S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  36. S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
    [Crossref]
  37. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [Crossref]
  38. F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
    [Crossref]
  39. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  40. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Hang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref]
  41. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
    [Crossref]
  42. F. Zhang, X. He, X. Zhou, and Y. Zhou, “Large group index induced by asymmetric split ring resonator dimer,” Appl. Phys. Lett. 103, 221904 (2013).
    [Crossref]
  43. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18, 17187–17192 (2010).
    [Crossref]
  44. Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
    [Crossref]
  45. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [Crossref]
  46. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
    [Crossref]
  47. X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
    [Crossref]
  48. F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
    [Crossref]
  49. J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
    [Crossref]
  50. F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21, 19675–19680 (2013).
    [Crossref]
  51. W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
    [Crossref]
  52. Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
    [Crossref]
  53. K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
    [Crossref]
  54. T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
    [Crossref]
  55. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
    [Crossref]
  56. J. Masukawa and R. N. Horne, “Application of the boundary integral method to immiscible displacement problems,” SPE Reserv. Eng. 3, 1069–1077 (1988).
    [Crossref]
  57. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [Crossref]
  58. B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
    [Crossref]
  59. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
    [Crossref]
  60. L. Zhu, F. Meng, J. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D 45, 445105 (2012).
    [Crossref]

2021 (1)

G. C. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun. 28, 106–113 (2021).
[Crossref]

2020 (6)

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
[Crossref]

L. Bariah, “A prospective look: key enabling technologies, applications and open research topics in 6G networks,” IEEE Access 8, 174792 (2020).
[Crossref]

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

K. Strecker, S. Ekin, and J. F. O’Hara, “Compensating atmospheric channel dispersion for terahertz wireless communication,” Sci. Rep. 10, 5816 (2020).
[Crossref]

M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
[Crossref]

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

2019 (3)

J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

2018 (2)

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

2017 (5)

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

M. Islam, J. M. Rao, G. Kumar, B. P. Dal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7, 7355 (2017).
[Crossref]

J. Dong, A. Locquet, and D. S. Citrin, “Global mapping of an old-master painting using sparcity-based terahertz reflectometry,” Sci. Rep. 7, 15098 (2017).
[Crossref]

2016 (2)

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

M. Okano and S. Watanabe, “Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy,” Sci. Rep. 6, 39079 (2016).
[Crossref]

2015 (1)

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 77–81 (2015).
[Crossref]

2013 (5)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21, 19675–19680 (2013).
[Crossref]

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

F. Zhang, X. He, X. Zhou, and Y. Zhou, “Large group index induced by asymmetric split ring resonator dimer,” Appl. Phys. Lett. 103, 221904 (2013).
[Crossref]

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

2012 (5)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

L. Zhu, F. Meng, J. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D 45, 445105 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100, 2271–2285 (2012).
[Crossref]

2011 (3)

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99, 171915 (2011).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

2010 (5)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18, 17187–17192 (2010).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4, 627–631 (2010).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2010).
[Crossref]

2009 (1)

A. V. Kabashin, P. Evans, and S. Pastkovsky, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

2008 (4)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Hang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

2007 (4)

M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
[Crossref]

M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

2006 (2)

G. Dolling, C. Enkrich, and M. Wegener, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2006).
[Crossref]

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54, 2113–2130 (2006).
[Crossref]

2005 (2)

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

2002 (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

1997 (1)

S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1991 (1)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

1988 (1)

J. Masukawa and R. N. Horne, “Application of the boundary integral method to immiscible displacement problems,” SPE Reserv. Eng. 3, 1069–1077 (1988).
[Crossref]

1986 (1)

A. Kocharovskaya and Ya. I. Khanin, “Population trapping and coherent bleaching of a three-level medium by a periodic train of ultrashort pulses,” Sov. Phys. JETP 63, 945 (1986).

1985 (1)

Agha, I.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Alexander, R. W.

Alexandropoulos, G. C.

G. C. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun. 28, 106–113 (2021).
[Crossref]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Bariah, L.

L. Bariah, “A prospective look: key enabling technologies, applications and open research topics in 6G networks,” IEEE Access 8, 174792 (2020).
[Crossref]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

Bell, R. J.

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Bennis, M.

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
[Crossref]

Bickert, P.

M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
[Crossref]

Birkedal, V.

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Bonache, J.

M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007).
[Crossref]

Burrow, J. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Cai, W.

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Carter, S.

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Chen, H.

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Chen, L.

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

Chen, S.

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Chin, S. L.

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4, 627–631 (2010).
[Crossref]

Chowdhury, D. R.

M. Islam, J. M. Rao, G. Kumar, B. P. Dal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7, 7355 (2017).
[Crossref]

Chung, D.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Citrin, D.

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Citrin, D. S.

J. Dong, A. Locquet, and D. S. Citrin, “Global mapping of an old-master painting using sparcity-based terahertz reflectometry,” Sci. Rep. 7, 15098 (2017).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
[Crossref]

Coldren, L.

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2010).
[Crossref]

Dai, J.

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4, 627–631 (2010).
[Crossref]

Dal, B. P.

M. Islam, J. M. Rao, G. Kumar, B. P. Dal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7, 7355 (2017).
[Crossref]

Debbah, M.

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
[Crossref]

Dexheimer, S. L.

S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).

Diao, J.

J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]

Ding, Y.-Q.

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Dolling, G.

Dong, J.

J. Dong, A. Locquet, and D. S. Citrin, “Global mapping of an old-master painting using sparcity-based terahertz reflectometry,” Sci. Rep. 7, 15098 (2017).
[Crossref]

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

Dong, Y.

Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100, 2271–2285 (2012).
[Crossref]

Economou, E. N.

M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Ekin, S.

K. Strecker, S. Ekin, and J. F. O’Hara, “Compensating atmospheric channel dispersion for terahertz wireless communication,” Sci. Rep. 10, 5816 (2020).
[Crossref]

Eldar, Y. C.

G. C. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun. 28, 106–113 (2021).
[Crossref]

Enkrich, C.

Erentok, A.

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54, 2113–2130 (2006).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, and S. Pastkovsky, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Fan, Y.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

Fedotov, V. A.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99, 171915 (2011).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Feng, T.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

Fink, M.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 77–81 (2015).
[Crossref]

Fu, J.

L. Zhu, F. Meng, J. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D 45, 445105 (2012).
[Crossref]

Fu, Q.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

Fujita, M.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

Garcia-Garcia, J.

M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Hang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Gibson, G. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Gil, M.

M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007).
[Crossref]

Gu, J.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Ha, T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Haase, B.

M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
[Crossref]

Han, B.

J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Han, Q.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

Hang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Hang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Harris, S.

S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Harris, S. E.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

He, M.-X.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

He, X.

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

F. Zhang, X. He, X. Zhou, and Y. Zhou, “Large group index induced by asymmetric split ring resonator dimer,” Appl. Phys. Lett. 103, 221904 (2013).
[Crossref]

He, Y.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

Hendry, E.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Ho, J. C.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

Hobson, P. A.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Hong, Z.

J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]

Horne, R. N.

J. Masukawa and R. N. Horne, “Application of the boundary integral method to immiscible displacement problems,” SPE Reserv. Eng. 3, 1069–1077 (1988).
[Crossref]

Hornett, S. M.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Huang, R.

Huang, X.

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

Hui, A.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

Imani, M. F.

G. C. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun. 28, 106–113 (2021).
[Crossref]

Imran, M. A.

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Islam, M.

M. Islam, J. M. Rao, G. Kumar, B. P. Dal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7, 7355 (2017).
[Crossref]

Itoh, T.

Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100, 2271–2285 (2012).
[Crossref]

Jeppesen, C.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2010).
[Crossref]

Jiang, H.

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Jing, X.

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, and S. Pastkovsky, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Kafesaki, M.

M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
[Crossref]

Kaina, N.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 77–81 (2015).
[Crossref]

Katsarakis, N.

M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
[Crossref]

Khandaker, M. R. A.

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
[Crossref]

Khanin, Ya. I.

A. Kocharovskaya and Ya. I. Khanin, “Population trapping and coherent bleaching of a three-level medium by a periodic train of ultrashort pulses,” Sov. Phys. JETP 63, 945 (1986).

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Kim, H.-D.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Kim, T.-T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2010).
[Crossref]

Kocharovskaya, A.

A. Kocharovskaya and Ya. I. Khanin, “Population trapping and coherent bleaching of a three-level medium by a periodic train of ultrashort pulses,” Sov. Phys. JETP 63, 945 (1986).

Koschny, T.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Koschny, Th.

M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
[Crossref]

Kristensen, A.

Kumar, G.

M. Islam, J. M. Rao, G. Kumar, B. P. Dal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7, 7355 (2017).
[Crossref]

Kurt, H.

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
[Crossref]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Kutas, M.

M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lang, T.

J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Lee, Y. H.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Lemoult, F.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 77–81 (2015).
[Crossref]

Lerosey, G.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 77–81 (2015).
[Crossref]

Li, C.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

Li, J.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

Li, X.

J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]

Li, Y.

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Li, Z.

Liang, Z.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

Liu, J.

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4, 627–631 (2010).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Hang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Liu, X.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

Locquet, A.

J. Dong, A. Locquet, and D. S. Citrin, “Global mapping of an old-master painting using sparcity-based terahertz reflectometry,” Sci. Rep. 7, 15098 (2017).
[Crossref]

Long, L. L.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Martel, J.

M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007).
[Crossref]

Martin, F.

M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007).
[Crossref]

Maslov, A.

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Masukawa, J.

J. Masukawa and R. N. Horne, “Application of the boundary integral method to immiscible displacement problems,” SPE Reserv. Eng. 3, 1069–1077 (1988).
[Crossref]

Mathews, J.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Meng, F.

L. Zhu, F. Meng, J. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D 45, 445105 (2012).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Min, B.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Mittleman, D.

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Molter, D.

M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
[Crossref]

Mortensen, N. A.

Nagatsuma, T.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

O’Hara, J. F.

K. Strecker, S. Ekin, and J. F. O’Hara, “Compensating atmospheric channel dispersion for terahertz wireless communication,” Sci. Rep. 10, 5816 (2020).
[Crossref]

Oh, S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Okano, M.

M. Okano and S. Watanabe, “Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy,” Sci. Rep. 6, 39079 (2016).
[Crossref]

Ordal, M. A.

Padgett, M. J.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, and S. Pastkovsky, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Pitchappa, P.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

Plum, E.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99, 171915 (2011).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Querry, M. R.

Rao, J. M.

M. Islam, J. M. Rao, G. Kumar, B. P. Dal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7, 7355 (2017).
[Crossref]

Ren, K.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

Ren, X.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

Riexinger, F.

M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sarangan, A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

Searles, T. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Shen, N.-H.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

Sherwin, M.

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Shlezinger, G. C.

G. C. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun. 28, 106–113 (2021).
[Crossref]

Singh, R.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Smith, D. R.

G. C. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun. 28, 106–113 (2021).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Soukoulis, C. M.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
[Crossref]

Stantchev, R. I.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Strecker, K.

K. Strecker, S. Ekin, and J. F. O’Hara, “Compensating atmospheric channel dispersion for terahertz wireless communication,” Sci. Rep. 10, 5816 (2020).
[Crossref]

Sui, C.

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]

Sun, B.

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Sun, Y.

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Tariq, F.

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
[Crossref]

Tassin, P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Tong, Y.

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Tsiapa, I.

M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
[Crossref]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

von Freymann, G.

M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
[Crossref]

Wang, C.

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Wang, L. D.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

Wang, S.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Hang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Watanabe, S.

M. Okano and S. Watanabe, “Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy,” Sci. Rep. 6, 39079 (2016).
[Crossref]

Webber, J.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

Wegener, M.

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Wong, K. K.

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
[Crossref]

Wu, Q.

L. Zhu, F. Meng, J. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D 45, 445105 (2012).
[Crossref]

Xiao, S.

Xu, M.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

Xue, C.-H.

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

Yamagami, Y.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

Yang, R.

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

Yang, Y.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

Yin, J.

J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]

Yin, X.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

Yip, S.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

Yu, X.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

Zhang, B.

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

Zhang, F.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

F. Zhang, X. He, X. Zhou, and Y. Zhou, “Large group index induced by asymmetric split ring resonator dimer,” Appl. Phys. Lett. 103, 221904 (2013).
[Crossref]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21, 19675–19680 (2013).
[Crossref]

Zhang, J.

Zhang, L.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Zhang, S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Hang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zhang, W.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19, 8912–8919 (2011).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

Zhang, X.-C.

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4, 627–631 (2010).
[Crossref]

Zhang, Y.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

Zhao, Q.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21, 19675–19680 (2013).
[Crossref]

Zhao, R.

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99, 171915 (2011).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Zhou, J.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21, 19675–19680 (2013).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Zhou, X.

F. Zhang, X. He, X. Zhou, and Y. Zhou, “Large group index induced by asymmetric split ring resonator dimer,” Appl. Phys. Lett. 103, 221904 (2013).
[Crossref]

Zhou, Y.

F. Zhang, X. He, X. Zhou, and Y. Zhou, “Large group index induced by asymmetric split ring resonator dimer,” Appl. Phys. Lett. 103, 221904 (2013).
[Crossref]

Zhu, J.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

Zhu, L.

L. Zhu, F. Meng, J. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D 45, 445105 (2012).
[Crossref]

Zhu, W.

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54, 2113–2130 (2006).
[Crossref]

ACS Photon. (1)

T.-T. Kim, H.-D. Kim, R. Zhao, S. Oh, T. Ha, D. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Adv. Mater. (1)

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-modulated scattering manipulation for exterior cloaking in metal–dielectric hybrid metamaterials,” Adv. Mater. 31, 1903206 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

Q. Fu, F. Zhang, Y. Fan, J. Dong, W. Cai, W. Zhu, S. Chen, and R. Yang, “Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory,” Appl. Phys. Lett. 110, 221905 (2017).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M.-X. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
[Crossref]

F. Zhang, X. He, X. Zhou, and Y. Zhou, “Large group index induced by asymmetric split ring resonator dimer,” Appl. Phys. Lett. 103, 221904 (2013).
[Crossref]

Y. Sun, Y. Tong, C.-H. Xue, Y.-Q. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103, 091904 (2013).
[Crossref]

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99, 171915 (2011).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett. 87, 041108 (2005).
[Crossref]

IEEE Access (1)

L. Bariah, “A prospective look: key enabling technologies, applications and open research topics in 6G networks,” IEEE Access 8, 174792 (2020).
[Crossref]

IEEE Photon. J. (1)

J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small antennas,” IEEE Trans. Antennas Propag. 54, 2113–2130 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Gil, J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, “Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design,” IEEE Trans. Microw. Theory Tech. 55, 1296–1304 (2007).
[Crossref]

IEEE Wireless Commun. (2)

F. Tariq, M. R. A. Khandaker, K. K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” IEEE Wireless Commun. 27, 118–125 (2020).
[Crossref]

G. C. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun. 28, 106–113 (2021).
[Crossref]

J. Appl. Phys. (1)

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]

J. Phys. Chem. B (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146–7159 (2002).
[Crossref]

J. Phys. D (3)

L. Zhu, F. Meng, J. Fu, and Q. Wu, “An electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D 45, 445105 (2012).
[Crossref]

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. D. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D 53, 135107 (2020).
[Crossref]

F. Zhang, C. Li, X. He, L. Chen, Y. Fan, Q. Zhao, W. Zhang, and J. Zhou, “Magnetically coupled Fano resonance of dielectric pentamer oligomer,” J. Phys. D 50, 275002 (2017).
[Crossref]

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2010).
[Crossref]

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Nat. Mater. (3)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

A. V. Kabashin, P. Evans, and S. Pastkovsky, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Nat. Photonics (5)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4, 627–631 (2010).
[Crossref]

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nat. Photonics 14, 446–451 (2020).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[Crossref]

Nature (1)

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 77–81 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

W. Cai, Y. Fan, X. Huang, Q. Fu, R. Yang, W. Zhu, and F. Zhang, “Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance,” Phys. Rev. A 100, 053804 (2019).
[Crossref]

Phys. Rev. B (2)

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97, 155403 (2018).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: the fishnet structure and its variations,” Phys. Rev. B 75, 235114 (2007).
[Crossref]

Phys. Rev. Lett. (5)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Hang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011).
[Crossref]

Phys. Today (1)

S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Proc. IEEE (1)

Y. Dong and T. Itoh, “Metamaterial-based antennas,” Proc. IEEE 100, 2271–2285 (2012).
[Crossref]

Sci. Adv. (2)

M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, “Terahertz quantum sensing,” Sci. Adv. 6, eaaz8065 (2020).
[Crossref]

R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry, “Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
[Crossref]

Sci. Rep. (4)

J. Dong, A. Locquet, and D. S. Citrin, “Global mapping of an old-master painting using sparcity-based terahertz reflectometry,” Sci. Rep. 7, 15098 (2017).
[Crossref]

K. Strecker, S. Ekin, and J. F. O’Hara, “Compensating atmospheric channel dispersion for terahertz wireless communication,” Sci. Rep. 10, 5816 (2020).
[Crossref]

M. Okano and S. Watanabe, “Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy,” Sci. Rep. 6, 39079 (2016).
[Crossref]

M. Islam, J. M. Rao, G. Kumar, B. P. Dal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7, 7355 (2017).
[Crossref]

Science (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

S. Carter, V. Birkedal, C. Wang, L. Coldren, A. Maslov, D. Citrin, and M. Sherwin, “Quantum coherence in an optical modulator,” Science 310, 651–653 (2005).
[Crossref]

Sov. Phys. JETP (1)

A. Kocharovskaya and Ya. I. Khanin, “Population trapping and coherent bleaching of a three-level medium by a periodic train of ultrashort pulses,” Sov. Phys. JETP 63, 945 (1986).

SPE Reserv. Eng. (1)

J. Masukawa and R. N. Horne, “Application of the boundary integral method to immiscible displacement problems,” SPE Reserv. Eng. 3, 1069–1077 (1988).
[Crossref]

Other (2)

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).

Data Availability

Data used are available on request. Requests for data materials should be addressed to the first author, Sen Hu (husen8209@126.com).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of metamaterial highlighting key design parameters. (a) Isometric view showing lattice structure of meta-atom unit cells; (b) top view of a single unit cell.
Fig. 2.
Fig. 2. Transmission spectra of two simpler metamaterials. (a) Four metal CW resonators with ${{\sigma}} = 0$ at normal incidence supporting the bright mode; (b) four dielectric square bricks at grazing incidence as the dark mode. Insets show field maps ($E$) at the resonant frequency of each resonator.
Fig. 3.
Fig. 3. (a) Transmission spectrum of proposed EIT metamaterial; (b) field maps ($E$) for EIT-like structure at frequency 0.55, 0.60, and 0.66 THz; (c) simulated transmission spectra for various polarization angles $\phi = {0^ \circ},\;{30^ \circ},\;{60^ \circ},\;{90^ \circ}$ with respect to the $x$ axis at normal incidence.
Fig. 4.
Fig. 4. Transmission spectrum of metamaterials. (a) Four metal CW resonators and one dielectric square brick; (b) four metal CW resonators and two dielectric square bricks on the right side; and (c) four metal CW resonators and two dielectric square bricks diagonally placed. Insets show field maps ($E$) at the resonant frequency of each transparency peak.
Fig. 5.
Fig. 5. Transmission spectra of proposed EIT metamaterial at various photosensitive Si conductivities.
Fig. 6.
Fig. 6. (a) Top view of unit cell with two different sizes of dielectric square bricks; (b) transmission spectra of EIT-like structures at $b = 50,54, 58, 62\;{{\unicode{x00B5}{\rm m}}}$, in which a is fixed at 50 µm; (c) field maps ($E$) at transmission peaks I and II with $b = 54 \;{{\unicode{x00B5}{\rm m}}}$.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε C u ( ω ) = ε ω P 2 ω 2 + i ω γ P ,

Metrics