Abstract

In this paper, the dyadic Green’s function for a graphene–dielectric stack is formulated based on the scattering superposition method. To this end, the scattering Green’s function in each layer is expanded in terms of cylindrical vector wave functions with unknown coefficients. Using the Kronecker delta function in the field expansion, it is considered that the field and source points lie in the arbitrary layers. Afterward, recurrence relations to calculate the unknown expansion coefficients are derived by applying the impedance boundary condition at the interface of a graphene sheet surrounded by two adjacent dielectric layers. The verification of the calculated coefficients is conducted by using them in the analysis of graphene-based structures with different numbers of layers, including (1) free-standing frequency-selective surfaces and (2) parallel plates with graphene walls. A potential application of our proposed structure is investigating the interaction of donor–acceptor pairs residing in the arbitrary layers of the graphene–dielectric stack with a desired number of layers.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Dyadic analysis of a cylindrical wire consisting of a cover with fully-populated surface conductivity tensor

Shiva Hayati Raad and Zahra Atlasbaf
Opt. Express 27(15) 21214-21225 (2019)

Method of lines for the analysis of tunable plasmonic devices composed of graphene-dielectric stack arrays

Mehri Ziaee Bideskan, Keyvan Forooraghi, Zahra Atlasbaf, Ali Mehrdadian, and Andrei V. Lavrinenko
Opt. Express 29(18) 28787-28804 (2021)

Spectral-domain dyadic Green’s function in layered chiral media

Sami M. Ali, Tarek M. Habashy, and Jin Au Kong
J. Opt. Soc. Am. A 9(3) 413-423 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription