Abstract

We present a dynamically tunable anomalous electromagnetic induced transparency (EIT) of a cavity-integrated metallic grating by the coupling of guided-mode resonance (GMR) with cavity-mode resonance (CMR) in the terahertz regime. The strong group slowing effect of terahertz waves results from the EIT mechanism under simultaneous excitation of GMR and CMR at a degenerate state. With the introduction of graphene as a functional layer overlying the grating structure, the enhanced group delay can be achievable beyond 6.1 ps with stable operation frequency and signal efficiency by tuning the graphene Fermi level. The work could provide an efficient scheme to manipulate the group velocity of terahertz signals.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable plasmon-induced transparency with a dielectric grating-coupled graphene structure for slowing terahertz waves

Tianzhi Wang, Fei Yan, Ruoxing Wang, Fengjun Tian, and Li Li
Appl. Opt. 59(24) 7179-7185 (2020)

Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime

Shuyuan Xiao, Tingting Liu, Chaobiao Zhou, Xiaoyun Jiang, Le Cheng, and Chen Xu
J. Opt. Soc. Am. B 36(7) E48-E54 (2019)

Tunable electromagnetically induced transparency metamaterial based on solid-state plasma: from a narrow band to a broad one

Quanfang Chen, Fenying Li, Dan Zhang, and Haifeng Zhang
J. Opt. Soc. Am. B 38(5) 1571-1578 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription