Abstract

Here, we present an innovative preform manufacturing technique for specialty optical fibers based on a carbon monoxide laser heating a rotating preform. The setup performance is evaluated with the aid of finite element modeling. The fabrication process is described in detail using silicon core preforms as a benchmark. The hybrid material nature of such a preform is addressed, together with the relevant characteristics, such as the difference in thermal conductivity and thermal expansion. Silicon core preforms with a wide range of core sizes were manufactured, proving the viability of this system for the development of specialty optical fibers based on novel materials.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Specialty optical fiber fabrication: fiber draw tower based on a CO laser furnace

Clarissa M. Harvey, Korbinian Mühlberger, Taras Oriekhov, Pawel Maniewski, and Michael Fokine
J. Opt. Soc. Am. B 38(12) F122-F129 (2021)

Manufacture and up-conversion luminescence of Er/Yb co-doped silica glass microstructure optical fiber based on the laser sintering technique

Yun Chen, Nan Zhao, Jiantao Liu, Jiaming Li, Dongrui Xiao, Fang Zhao, Guiyao Zhou, Perry Ping Shum, and Liyang Shao
Opt. Mater. Express 11(5) 1431-1440 (2021)

Fused preforms for the fabrication of photonic crystal fibers

Paul Falkenstein, Charles D. Merritt, and Brian L. Justus
Opt. Lett. 29(16) 1858-1860 (2004)

References

  • View by:

  1. J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
    [Crossref]
  2. S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
    [Crossref]
  3. A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
    [Crossref]
  4. A. Krier, ed., Mid-infrared Semiconductor Optoelectronics, Springer Series in Optical Sciences (Springer-Verlag, 2006).
  5. M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-um fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
    [Crossref]
  6. A. C. Peacock and N. Healy, “Semiconductor optical fibres for infrared applications: a review,” Semicond. Sci. Technol. 31, 103004 (2016).
    [Crossref]
  7. U. J. Gibson, L. Wei, and J. Ballato, “Semiconductor core fibres: materials science in a bottle,” Nat. Commun. 12, 3990 (2021).
    [Crossref]
  8. H. C. L. Tsui and N. Healy, “Recent progress of semiconductor optoelectronic fibers,” Front. Optoelectron. (in press).
    [Crossref]
  9. M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
    [Crossref]
  10. E. F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U. J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Opt. Mater. Express 3, 651–657 (2013).
    [Crossref]
  11. U. C. Paek, “Laser drawing of optical fibers,” Appl. Opt. 13, 1383–1386 (1974).
    [Crossref]
  12. M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7, 1589–1597 (2017).
    [Crossref]
  13. D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
    [Crossref]
  14. N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
    [Crossref]
  15. C. Shi, M. L. Ermold, G. E. Oulundsen, and L. A. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 109110M (2019).
    [Crossref]
  16. C. M. Harvey, K. Mühlberger, T. Oriekhov, P. Maniewski, and M. Fokine, “Specialty optical fiber fabrication: fiber draw tower based on a CO laser furnace,” J. Opt. Soc. Am. B 38, F122–F129 (2021).
    [Crossref]
  17. M. Schellhorn and H. von Buelow, “High-power gas dynamically cooled CO laser with unstable resonator,” Proc. SPIE 2502, 63–68 (1995).
    [Crossref]
  18. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
    [Crossref]
  19. R. A. Logan and W. L. Bond, “Density change in silicon upon melting,” J. Appl. Phys. 30, 322 (1959).
    [Crossref]
  20. K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
    [Crossref]
  21. S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
    [Crossref]
  22. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
    [Crossref]
  23. L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
    [Crossref]
  24. S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
    [Crossref]
  25. S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
    [Crossref]
  26. T. Okada, T. Iwaki, H. Kasahara, and K. Yamamoto, “Probing the crystallinity of evaporated silicon films by Raman scattering,” Jpn. J. Appl. Phys. 24, 161–165 (1985).
    [Crossref]

2021 (3)

U. J. Gibson, L. Wei, and J. Ballato, “Semiconductor core fibres: materials science in a bottle,” Nat. Commun. 12, 3990 (2021).
[Crossref]

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

C. M. Harvey, K. Mühlberger, T. Oriekhov, P. Maniewski, and M. Fokine, “Specialty optical fiber fabrication: fiber draw tower based on a CO laser furnace,” J. Opt. Soc. Am. B 38, F122–F129 (2021).
[Crossref]

2019 (2)

C. Shi, M. L. Ermold, G. E. Oulundsen, and L. A. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 109110M (2019).
[Crossref]

K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
[Crossref]

2017 (1)

2016 (4)

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

A. C. Peacock and N. Healy, “Semiconductor optical fibres for infrared applications: a review,” Semicond. Sci. Technol. 31, 103004 (2016).
[Crossref]

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

2013 (2)

2011 (1)

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

2008 (1)

2007 (1)

2005 (1)

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

2004 (1)

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

2001 (1)

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

2000 (1)

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-um fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[Crossref]

1995 (1)

M. Schellhorn and H. von Buelow, “High-power gas dynamically cooled CO laser with unstable resonator,” Proc. SPIE 2502, 63–68 (1995).
[Crossref]

1985 (1)

T. Okada, T. Iwaki, H. Kasahara, and K. Yamamoto, “Probing the crystallinity of evaporated silicon films by Raman scattering,” Jpn. J. Appl. Phys. 24, 161–165 (1985).
[Crossref]

1982 (1)

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

1974 (1)

1959 (1)

R. A. Logan and W. L. Bond, “Density change in silicon upon melting,” J. Appl. Phys. 30, 322 (1959).
[Crossref]

Abouraddy, A. F.

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

Adams, A. R.

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

Ballato, J.

U. J. Gibson, L. Wei, and J. Ballato, “Semiconductor core fibres: materials science in a bottle,” Nat. Commun. 12, 3990 (2021).
[Crossref]

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7, 1589–1597 (2017).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[Crossref]

Baudelle, K.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Bernard, R.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Bigot, L.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Boileau, J.

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

Bond, W. L.

R. A. Logan and W. L. Bond, “Density change in silicon upon melting,” J. Appl. Phys. 30, 322 (1959).
[Crossref]

Bouwmans, G.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Breiby, D. W.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

Bringa, E.

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

Buset, O. T.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

Cassez, A.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Chan, L.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Chazallon, B.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Coucheron, D. A.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

Cumming, A.

K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
[Crossref]

Daw, M.

Deng, D. S.

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

Dibbs, A. N.

Dickinson, M. R.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-um fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[Crossref]

Dragic, P.

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

Elliott, C. T.

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

Ellison, M.

Eraker, A. J.

Ermold, M. L.

C. Shi, M. L. Ermold, G. E. Oulundsen, and L. A. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 109110M (2019).
[Crossref]

Fokine, M.

C. M. Harvey, K. Mühlberger, T. Oriekhov, P. Maniewski, and M. Fokine, “Specialty optical fiber fabrication: fiber draw tower based on a CO laser furnace,” J. Opt. Soc. Am. B 38, F122–F129 (2021).
[Crossref]

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7, 1589–1597 (2017).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Foy, P.

Franz, Y.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Gannot, I.

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

Ghosh, S.

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

Gibson, U. J.

U. J. Gibson, L. Wei, and J. Ballato, “Semiconductor core fibres: materials science in a bottle,” Nat. Commun. 12, 3990 (2021).
[Crossref]

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7, 1589–1597 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

E. F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U. J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Opt. Mater. Express 3, 651–657 (2013).
[Crossref]

Gustafson, P.

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

Habert, R.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Hahn, E.

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

Hammond, G.

K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
[Crossref]

Harris, S. J.

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

Harvey, C. M.

Hawkins, T.

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7, 1589–1597 (2017).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[Crossref]

Healy, N.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

A. C. Peacock and N. Healy, “Semiconductor optical fibres for infrared applications: a review,” Semicond. Sci. Technol. 31, 103004 (2016).
[Crossref]

H. C. L. Tsui and N. Healy, “Recent progress of semiconductor optoelectronic fibers,” Front. Optoelectron. (in press).
[Crossref]

Hough, J.

K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
[Crossref]

Hsia, L. C.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Ilev, I. K.

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

Iwaki, T.

T. Okada, T. Iwaki, H. Kasahara, and K. Yamamoto, “Probing the crystallinity of evaporated silicon films by Raman scattering,” Jpn. J. Appl. Phys. 24, 161–165 (1985).
[Crossref]

Jackson, S. D.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-um fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[Crossref]

Jonasz, M.

Jones, M.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

Jones, R.

K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
[Crossref]

Kad, B.

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

Kalli, K.

Kasahara, H.

T. Okada, T. Iwaki, H. Kasahara, and K. Yamamoto, “Probing the crystallinity of evaporated silicon films by Raman scattering,” Jpn. J. Appl. Phys. 24, 161–165 (1985).
[Crossref]

Kaufman, J. J.

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

King, T. A.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-um fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[Crossref]

Kitamura, R.

Kokuoz, B.

Krier, A.

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

Kudinova, M.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Lee, K.-H.

K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
[Crossref]

Liu, J. P.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Logan, R. A.

R. A. Logan and W. L. Bond, “Density change in silicon upon melting,” J. Appl. Phys. 30, 322 (1959).
[Crossref]

MacChesney, J.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

Majumdar, B.

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

Maniewski, P.

Marinova, M.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

McMillen, C.

Meyers, M.

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

Mühlberger, K.

Murdin, B. N.

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

Nagel, S.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

Newman, L. A.

C. Shi, M. L. Ermold, G. E. Oulundsen, and L. A. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 109110M (2019).
[Crossref]

Ni, Z. H.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Nordstrand, E. F.

Nuns, N.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

O’Neill, A. E.

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

Okada, T.

T. Okada, T. Iwaki, H. Kasahara, and K. Yamamoto, “Probing the crystallinity of evaporated silicon films by Raman scattering,” Jpn. J. Appl. Phys. 24, 161–165 (1985).
[Crossref]

Oriekhov, T.

Oulundsen, G. E.

C. Shi, M. L. Ermold, G. E. Oulundsen, and L. A. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 109110M (2019).
[Crossref]

Paek, U. C.

Patil, N.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

Peacock, A. C.

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

A. C. Peacock and N. Healy, “Semiconductor optical fibres for infrared applications: a review,” Semicond. Sci. Technol. 31, 103004 (2016).
[Crossref]

Pierce, M. C.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-um fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[Crossref]

Pilon, L.

Plus, S.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Powers, D. R.

Rao, A. M.

Remington, B.

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

Reppert, J.

Rice, R. R.

Rowan, S.

K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
[Crossref]

Schellhorn, M.

M. Schellhorn and H. von Buelow, “High-power gas dynamically cooled CO laser with unstable resonator,” Proc. SPIE 2502, 63–68 (1995).
[Crossref]

Shabahang, S.

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

Sharma, S.

Shen, Z. X.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Shi, C.

C. Shi, M. L. Ermold, G. E. Oulundsen, and L. A. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 109110M (2019).
[Crossref]

Shori, R.

Sloan, P.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-um fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[Crossref]

Sohn, D. K.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Song, S.

Stafsudd, O.

Stolen, R.

Theodosiou, A.

Tsui, H. C. L.

H. C. L. Tsui and N. Healy, “Recent progress of semiconductor optoelectronic fibers,” Front. Optoelectron. (in press).
[Crossref]

Vanvincq, O.

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

von Buelow, H.

M. Schellhorn and H. von Buelow, “High-power gas dynamically cooled CO laser with unstable resonator,” Proc. SPIE 2502, 63–68 (1995).
[Crossref]

Walker, K.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

Waynant, R. W.

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

Weber, W. H.

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

Wehrenberg, C.

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

Wei, L.

U. J. Gibson, L. Wei, and J. Ballato, “Semiconductor core fibres: materials science in a bottle,” Nat. Commun. 12, 3990 (2021).
[Crossref]

Wong, C. C.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Wong, L. H.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Yamamoto, K.

T. Okada, T. Iwaki, H. Kasahara, and K. Yamamoto, “Probing the crystallinity of evaporated silicon films by Raman scattering,” Jpn. J. Appl. Phys. 24, 161–165 (1985).
[Crossref]

Yang, W.

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

Zang, H.

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

Zhao, S.

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

Acta Mater. (1)

S. Zhao, E. Hahn, B. Kad, B. Remington, C. Wehrenberg, E. Bringa, and M. Meyers, “Amorphization and nanocrystallization of silicon under shock compression,” Acta Mater. 103, 519–533 (2016).
[Crossref]

Adv. Opt. Mater. (1)

N. Healy, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, and U. J. Gibson, “CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss,” Adv. Opt. Mater. 4, 1004–1008 (2016).
[Crossref]

APL Photon. (1)

M. Kudinova, G. Bouwmans, O. Vanvincq, R. Habert, S. Plus, R. Bernard, K. Baudelle, A. Cassez, B. Chazallon, M. Marinova, N. Nuns, and L. Bigot, “Two-step manufacturing of hundreds of meter-long silicon micrometer-size core optical fibers with less than 0.2 dB/cm background losses,” APL Photon. 6, 026101 (2021).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Shabahang, J. J. Kaufman, D. S. Deng, and A. F. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

Class. Quantum Gravity (1)

K.-H. Lee, G. Hammond, J. Hough, R. Jones, S. Rowan, and A. Cumming, “Improved fused silica fibres for the advanced LIGO monolithic suspensions,” Class. Quantum Gravity 36, 185018 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

J. Appl. Phys. (2)

R. A. Logan and W. L. Bond, “Density change in silicon upon melting,” J. Appl. Phys. 30, 322 (1959).
[Crossref]

S. J. Harris, A. E. O’Neill, W. Yang, P. Gustafson, J. Boileau, W. H. Weber, B. Majumdar, and S. Ghosh, “Measurement of the state of stress in silicon with micro-Raman spectroscopy,” J. Appl. Phys. 96, 7195–7201 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

L. H. Wong, C. C. Wong, J. P. Liu, D. K. Sohn, L. Chan, L. C. Hsia, H. Zang, Z. H. Ni, and Z. X. Shen, “Determination of Raman phonon strain shift coefficient of strained silicon and strained SiGe,” Jpn. J. Appl. Phys. 44, 7922–7924 (2005).
[Crossref]

T. Okada, T. Iwaki, H. Kasahara, and K. Yamamoto, “Probing the crystallinity of evaporated silicon films by Raman scattering,” Jpn. J. Appl. Phys. 24, 161–165 (1985).
[Crossref]

Lasers Surg. Med. (1)

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-um fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000).
[Crossref]

Nat. Commun. (2)

U. J. Gibson, L. Wei, and J. Ballato, “Semiconductor core fibres: materials science in a bottle,” Nat. Commun. 12, 3990 (2021).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7, 13265 (2016).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (2)

Philos. Trans. R. Soc. London A (1)

A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. London A 359, 635–644 (2001).
[Crossref]

Proc. SPIE (2)

M. Schellhorn and H. von Buelow, “High-power gas dynamically cooled CO laser with unstable resonator,” Proc. SPIE 2502, 63–68 (1995).
[Crossref]

C. Shi, M. L. Ermold, G. E. Oulundsen, and L. A. Newman, “CO2 and CO laser comparison of glass and ceramic processing,” Proc. SPIE 10911, 109110M (2019).
[Crossref]

Semicond. Sci. Technol. (1)

A. C. Peacock and N. Healy, “Semiconductor optical fibres for infrared applications: a review,” Semicond. Sci. Technol. 31, 103004 (2016).
[Crossref]

Other (2)

A. Krier, ed., Mid-infrared Semiconductor Optoelectronics, Springer Series in Optical Sciences (Springer-Verlag, 2006).

H. C. L. Tsui and N. Healy, “Recent progress of semiconductor optoelectronic fibers,” Front. Optoelectron. (in press).
[Crossref]

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic of the experimental setup. Pink arrows represent degrees of freedom.
Fig. 2.
Fig. 2. Schematic of four basic processing steps during rod-in-tube assembly.
Fig. 3.
Fig. 3. Example of assembled silicon core preform with attached PVC tubing.
Fig. 4.
Fig. 4. Simulated heating time of different diameters of pure silica preforms irradiated from time $t = 0$ with 250 W from a CO laser. The temperature shown is the average temperature of the transverse, circular cross section of the preform at the point where the laser is incident.
Fig. 5.
Fig. 5. Snapshots of the axial cross section of a simulated silicon core preform during processing. The modeled preform has a core of 1 mm in diameter and a 6 mm outer diameter. Snapshots were taken in the material reference frame after 2 s, 7 s, and 12 s of CO laser exposure with the preform rotating at 100 rpm.
Fig. 6.
Fig. 6. Schematic of a silicon core preform during tapering. Black is silicon, dark blue is solid silica, and light blue is the cavity of the silica tube.
Fig. 7.
Fig. 7. Measured temperature at the preform hotspot during the tapering procedure of a 210-mm-long preform processed at $0.3\;{\rm{mm}}\;{\rm{mi}}{{\rm{n}}^{- 1}}$. In this example, each point on the preform is above the melting temperature of silicon for 40 s. The blue line represents the moving average. Indicators b, c, and d correspond to those shown in Fig. 6.
Fig. 8.
Fig. 8. Cross-polarizer micrograph of the starting tapering point having (a) a detrimental propagating crack and (b) intentional crack formation. The white glow indicates the captured stress within the taper.
Fig. 9.
Fig. 9. Silicon core tapering process at point (c). Red line indicates the Gaussian beam shape from the laser.
Fig. 10.
Fig. 10. Cross-polarized image of 1.8 mm initial tapers with (a) 500 µm and (b) 33 µm silicon core.
Fig. 11.
Fig. 11. Two 6 mm OD silicon core preform examples after two-stage tapering with (a) 300 µm core and (b) 30 µm core after four-stage tapering.
Fig. 12.
Fig. 12. Raman scattering spectra of (gray) silicon rod and (blue and pink) silicon preforms after tapering. Negative Raman shift of the silicon peaks indicates that the silicon core of samples shown in Fig. 11 is under comparable tensile strain. The solid lines are Lorentzian fits.

Tables (1)

Tables Icon

Table 1. Tapering Parameters

Metrics