Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design of a broadband infrared absorber based on multiple layers of black phosphorus nanoribbons

Not Accessible

Your library or personal account may give you access

Abstract

A polarization-sensitive broadband plasmonic absorber consists of multiple black phosphorus (BP)/dielectric layers stacking on an Ag reflector has been proposed theoretically and demonstrated numerically for infrared (IR) regime. The optimum geometrical parameters have been achieved by parametric sweep analyses with regard to the fabrication considerations and miniaturization of the absorber structure. So a high absorption (above 85%) with relatively broad bandwidth of 5.24 µm corresponding to the relative bandwidth of 42.12% has been achieved for the designed periodic structure with optimum unit cell dimensions of ${0.5}\;\unicode{x00B5}{\rm m} \times {1.755}\;\unicode{x00B5}{\rm m}$. The electromagnetic loss in the BP material is the foundation of absorption performance in the designed absorber. The proposed anisotropic broadband IR absorber may have great potential in many areas of photonics.

© 2021 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers

Yijun Cai, Kai-Da Xu, Naixing Feng, Rongrong Guo, Haijun Lin, and Jinfeng Zhu
Opt. Express 27(3) 3101-3112 (2019)

Designing a nearly perfect infrared absorber in monolayer black phosphorus

Daxing Dong, Youwen Liu, Yue Fei, Yongqing Fan, Junsheng Li, Yuncai Feng, and Yangyang Fu
Appl. Opt. 58(14) 3862-3869 (2019)

Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials

Jiao Wang and Yannan Jiang
Opt. Express 25(5) 5206-5216 (2017)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.