Abstract

In this work, we show that the quantum interference between two spontaneous emission channels can be greatly enhanced when a three-level V-type quantum emitter is placed near the bismuth chalcogenide (${{\rm Bi}_2}{{\rm Te}_3}$). Namely, we calculated the degree of quantum interference for quantum emitters placed in the vicinity of a planar surface of a ${{\rm Bi}_2}{{\rm Te}_3}$ slab, as well as near a ${{\rm Bi}_2}{{\rm Te}_3}$ microsphere. We found, in particular, that the degree of quantum interference assumes very high values, for both geometries, which is a result of the strong dependence of the spontaneous emission rate on the orientation of a quantum-emitter dipole relative to the ${{\rm Bi}_2}{{\rm Te}_3}$ surface, at the frequencies of polaritonic-type excitations. These particular high values of quantum interference can trigger a variety of phenomena associated with quantum interference of spontaneous-emission channels, such as lasing without inversion, coherent populations trapping, transparency, nonlinearities, and so forth.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Photothermal induced bistability in the spontaneous decay rate of an emitter near a hybrid VO2–Au nanoshell

Neda Daliran, Ali Hatef, and Abdollah Hassanzadeh
J. Opt. Soc. Am. B 38(10) 3071-3077 (2021)

Strong coupling regime and bound states in the continuum between a quantum emitter and phonon-polariton modes

Vasilios Karanikolas, Ioannis Thanopulos, and Emmanuel Paspalakis
Opt. Express 29(15) 23408-23420 (2021)

Quantum interference in a single anisotropic quantum dot near hyperbolic metamaterials

Lu Sun and Chun Jiang
Opt. Express 24(7) 7719-7727 (2016)

References

  • View by:

  1. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2018).
    [Crossref]
  2. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
    [Crossref]
  3. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [Crossref]
  4. N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
    [Crossref]
  5. G. Siroki, D. K. K. Lee, P. D. Haynes, and V. Giannini, “Single-electron induced surface plasmons on a topological nanoparticle,” Nat. Commun. 7, 12375 (2016).
    [Crossref]
  6. M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
    [Crossref]
  7. G. D. Chatzidakis and V. Yannopapas, “Strong electromagnetic coupling in dimers of topological-insulator nanoparticles and quantum emitters,” Phys. Rev. B 101, 165410 (2020).
    [Crossref]
  8. M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, “Vacuum-induced processes in multi-level atoms,” Prog. Opt. 55, 85–197 (2010).
    [Crossref]
  9. Z. Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments (Springer-Verlag, 2005).
  10. S.-Y. Zhu, R. C. F. Chan, and C. P. Lee, “Spontaneous emission from a three-level atom,” Phys. Rev. A 52, 710 (1995).
    [Crossref]
  11. S.-Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388 (1996).
    [Crossref]
  12. A. Imamoglu, “Interference of radiatively broadened resonances,” Phys. Rev. A 40, 2835 (1989).
    [Crossref]
  13. P. Zhou and S. Swain, “Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion,” Phys. Rev. Lett. 78, 832 (1997).
    [Crossref]
  14. E. Paspalakis, S.-Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
    [Crossref]
  15. S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a lambda system,” Phys. Rev. A 57, 4014 (1998).
    [Crossref]
  16. J. H. Wu, H. F. Zhang, and J. Y. Gao, “Probe gain with population inversion in a four-level atomic system with vacuum-induced coherence,” Opt. Lett. 28, 654–656 (2003).
    [Crossref]
  17. P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995 (1996).
    [Crossref]
  18. B. M. Garraway and P. L. Knight, “Cavity modified quantum beats,” Phys. Rev. A 54, 3592 (1996).
    [Crossref]
  19. H.-R. Xia, C.-Y. Ye, and S.-Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032 (1996).
    [Crossref]
  20. P. R. Berman, “Analysis of dynamical suppression of spontaneous emission,” Phys. Rev. A 58, 4886 (1998).
    [Crossref]
  21. E. Paspalakis, C. H. Keitel, and P. L. Knight, “Fluorescence control through multiple interference mechanisms,” Phys. Rev. A 58, 4868 (1998).
    [Crossref]
  22. C. H. Keitel, “Narrowing spontaneous emission without intensity reduction,” Phys. Rev. Lett. 83, 1307 (1999).
    [Crossref]
  23. M. Macovei and C. H. Keitel, “Laser control of collective spontaneous emission,” Phys. Rev. Lett. 91, 123601 (2003).
    [Crossref]
  24. C.-L. Wang, A.-I. Li, X.-Y. Zhou, Z.-H. Kang, J. Yun, and J.-Y. Gao, “Investigation of spontaneously generated coherence in dressed states of 85Rb atoms,” Opt. Lett. 33, 687–689 (2008).
    [Crossref]
  25. C.-L. Wang, Z.-H. Kang, S.-C. Tian, Y. Jiang, and J.-Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009).
    [Crossref]
  26. E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
    [Crossref]
  27. M. Macovei, J. Evers, and C. H. Keitel, “Phase control of collective quantum dynamics,” Phys. Rev. Lett. 91, 233601 (2003).
    [Crossref]
  28. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079 (1999).
    [Crossref]
  29. D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
    [Crossref]
  30. M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
    [Crossref]
  31. Y.-P. Niu and S.-Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
    [Crossref]
  32. G. S. Agarwal, “Anisotropic vacuum-induced interference in decay channels,” Phys. Rev. Lett. 84, 5500 (2000).
    [Crossref]
  33. G. X. Li, F.-L. Li, and S.-Y. Zhu, “Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium,” Phys. Rev. A 64, 013819 (2001).
    [Crossref]
  34. Y.-P. Yang, J.-P. Xu, H. Chen, and S.-Y. Zhu, “ Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100, 043601 (2008).
    [Crossref]
  35. G.-X. Li, J. Evers, and C. H. Keitel, “ Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B 80, 045102 (2009).
    [Crossref]
  36. P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, “ Metasurface-enabled remote quantum interference,” Phys. Rev. Lett. 115, 025501 (2015).
    [Crossref]
  37. L. Sun and C. Jiang, “Quantum interference in a single anisotropic quantum dot near hyperbolic metamaterials,” Opt. Express 24, 7719–7727 (2016).
    [Crossref]
  38. S. Hughes and G. S. Agarwal, “Anisotropy-induced quantum interference and population trapping between orthogonal quantum dot exciton states in semiconductor cavity systems,” Phys. Rev. Lett. 118, 063601 (2017).
    [Crossref]
  39. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-induced enhancement of quantum interference near metallic nanostructures,” Phys. Rev. Lett. 103, 063602 (2009).
    [Crossref]
  40. I. Thanopulos, V. Yannopapas, and E. Paspalakis, “Non-Markovian dynamics in plasmon-induced spontaneous emission interference,” Phys. Rev. B 95, 075412 (2017).
    [Crossref]
  41. V. Karanikolas and E. Paspalakis, “Plasmon-induced quantum interference near carbon nanostructures,” J. Phys. Chem. C 122, 14788 (2018).
    [Crossref]
  42. X.-D. Zeng, Z.-H. Li, G.-Q. Ge, and M. S. Zubairy, “Quantum interference near graphene layers: observing the surface plasmons with transverse electric polarization,” Phys. Rev. A 99, 043811 (2019).
    [Crossref]
  43. I. Thanopulos, V. Karanikolas, and E. Paspalakis, “Non-Markovian spontaneous emission interference near a MoS2 nanodisk,” Opt. Lett. 44, 3510–3513 (2019).
    [Crossref]
  44. R. Sainidou, N. Stefanou, and A. Modinos, “Green’s function formalism for phononic crystals,” Phys. Rev. B 69, 064301 (2004).
    [Crossref]
  45. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
    [Crossref]
  46. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
    [Crossref]
  47. V. Yannopapas and N. V. Vitanov, “Electromagnetic Green’s tensor and local density of states calculations for collections of spherical scatterers,” Phys. Rev. B 75, 115124 (2007).
    [Crossref]
  48. A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
    [Crossref]
  49. S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
    [Crossref]
  50. V. Yannopapas and N. V. Vitanov, “Fluctuational electrodynamics in the presence of finite thermal sources,” Phys. Rev. Lett. 99, 053901 (2007).
    [Crossref]
  51. S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics,” Phys. Rev. A 83, 055805 (2011).
    [Crossref]
  52. P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots, 4th ed. (Wiley, 2016).

2020 (2)

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

G. D. Chatzidakis and V. Yannopapas, “Strong electromagnetic coupling in dimers of topological-insulator nanoparticles and quantum emitters,” Phys. Rev. B 101, 165410 (2020).
[Crossref]

2019 (2)

X.-D. Zeng, Z.-H. Li, G.-Q. Ge, and M. S. Zubairy, “Quantum interference near graphene layers: observing the surface plasmons with transverse electric polarization,” Phys. Rev. A 99, 043811 (2019).
[Crossref]

I. Thanopulos, V. Karanikolas, and E. Paspalakis, “Non-Markovian spontaneous emission interference near a MoS2 nanodisk,” Opt. Lett. 44, 3510–3513 (2019).
[Crossref]

2018 (2)

V. Karanikolas and E. Paspalakis, “Plasmon-induced quantum interference near carbon nanostructures,” J. Phys. Chem. C 122, 14788 (2018).
[Crossref]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2018).
[Crossref]

2017 (3)

I. Thanopulos, V. Yannopapas, and E. Paspalakis, “Non-Markovian dynamics in plasmon-induced spontaneous emission interference,” Phys. Rev. B 95, 075412 (2017).
[Crossref]

S. Hughes and G. S. Agarwal, “Anisotropy-induced quantum interference and population trapping between orthogonal quantum dot exciton states in semiconductor cavity systems,” Phys. Rev. Lett. 118, 063601 (2017).
[Crossref]

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

2016 (2)

L. Sun and C. Jiang, “Quantum interference in a single anisotropic quantum dot near hyperbolic metamaterials,” Opt. Express 24, 7719–7727 (2016).
[Crossref]

G. Siroki, D. K. K. Lee, P. D. Haynes, and V. Giannini, “Single-electron induced surface plasmons on a topological nanoparticle,” Nat. Commun. 7, 12375 (2016).
[Crossref]

2015 (1)

P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, “ Metasurface-enabled remote quantum interference,” Phys. Rev. Lett. 115, 025501 (2015).
[Crossref]

2012 (1)

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[Crossref]

2011 (1)

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics,” Phys. Rev. A 83, 055805 (2011).
[Crossref]

2010 (3)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, “Vacuum-induced processes in multi-level atoms,” Prog. Opt. 55, 85–197 (2010).
[Crossref]

2009 (3)

C.-L. Wang, Z.-H. Kang, S.-C. Tian, Y. Jiang, and J.-Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009).
[Crossref]

G.-X. Li, J. Evers, and C. H. Keitel, “ Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B 80, 045102 (2009).
[Crossref]

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-induced enhancement of quantum interference near metallic nanostructures,” Phys. Rev. Lett. 103, 063602 (2009).
[Crossref]

2008 (2)

Y.-P. Yang, J.-P. Xu, H. Chen, and S.-Y. Zhu, “ Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100, 043601 (2008).
[Crossref]

C.-L. Wang, A.-I. Li, X.-Y. Zhou, Z.-H. Kang, J. Yun, and J.-Y. Gao, “Investigation of spontaneously generated coherence in dressed states of 85Rb atoms,” Opt. Lett. 33, 687–689 (2008).
[Crossref]

2007 (3)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref]

V. Yannopapas and N. V. Vitanov, “Fluctuational electrodynamics in the presence of finite thermal sources,” Phys. Rev. Lett. 99, 053901 (2007).
[Crossref]

V. Yannopapas and N. V. Vitanov, “Electromagnetic Green’s tensor and local density of states calculations for collections of spherical scatterers,” Phys. Rev. B 75, 115124 (2007).
[Crossref]

2006 (1)

Y.-P. Niu and S.-Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
[Crossref]

2005 (1)

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

2004 (1)

R. Sainidou, N. Stefanou, and A. Modinos, “Green’s function formalism for phononic crystals,” Phys. Rev. B 69, 064301 (2004).
[Crossref]

2003 (3)

M. Macovei, J. Evers, and C. H. Keitel, “Phase control of collective quantum dynamics,” Phys. Rev. Lett. 91, 233601 (2003).
[Crossref]

M. Macovei and C. H. Keitel, “Laser control of collective spontaneous emission,” Phys. Rev. Lett. 91, 123601 (2003).
[Crossref]

J. H. Wu, H. F. Zhang, and J. Y. Gao, “Probe gain with population inversion in a four-level atomic system with vacuum-induced coherence,” Opt. Lett. 28, 654–656 (2003).
[Crossref]

2001 (2)

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[Crossref]

G. X. Li, F.-L. Li, and S.-Y. Zhu, “Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium,” Phys. Rev. A 64, 013819 (2001).
[Crossref]

2000 (2)

G. S. Agarwal, “Anisotropic vacuum-induced interference in decay channels,” Phys. Rev. Lett. 84, 5500 (2000).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[Crossref]

1999 (2)

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079 (1999).
[Crossref]

C. H. Keitel, “Narrowing spontaneous emission without intensity reduction,” Phys. Rev. Lett. 83, 1307 (1999).
[Crossref]

1998 (6)

E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
[Crossref]

E. Paspalakis, S.-Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a lambda system,” Phys. Rev. A 57, 4014 (1998).
[Crossref]

P. R. Berman, “Analysis of dynamical suppression of spontaneous emission,” Phys. Rev. A 58, 4886 (1998).
[Crossref]

E. Paspalakis, C. H. Keitel, and P. L. Knight, “Fluorescence control through multiple interference mechanisms,” Phys. Rev. A 58, 4868 (1998).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[Crossref]

1997 (1)

P. Zhou and S. Swain, “Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion,” Phys. Rev. Lett. 78, 832 (1997).
[Crossref]

1996 (4)

S.-Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388 (1996).
[Crossref]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995 (1996).
[Crossref]

B. M. Garraway and P. L. Knight, “Cavity modified quantum beats,” Phys. Rev. A 54, 3592 (1996).
[Crossref]

H.-R. Xia, C.-Y. Ye, and S.-Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032 (1996).
[Crossref]

1995 (1)

S.-Y. Zhu, R. C. F. Chan, and C. P. Lee, “Spontaneous emission from a three-level atom,” Phys. Rev. A 52, 710 (1995).
[Crossref]

1989 (1)

A. Imamoglu, “Interference of radiatively broadened resonances,” Phys. Rev. A 40, 2835 (1989).
[Crossref]

Agarwal, G. S.

S. Hughes and G. S. Agarwal, “Anisotropy-induced quantum interference and population trapping between orthogonal quantum dot exciton states in semiconductor cavity systems,” Phys. Rev. Lett. 118, 063601 (2017).
[Crossref]

G. S. Agarwal, “Anisotropic vacuum-induced interference in decay channels,” Phys. Rev. Lett. 84, 5500 (2000).
[Crossref]

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a lambda system,” Phys. Rev. A 57, 4014 (1998).
[Crossref]

Antosiewicz, T. J.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2018).
[Crossref]

Baranov, D. G.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2018).
[Crossref]

Bauer, G.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Berman, P. R.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

P. R. Berman, “Analysis of dynamical suppression of spontaneous emission,” Phys. Rev. A 58, 4886 (1998).
[Crossref]

Boltasseva, A.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Bortman-Arbiv, D.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[Crossref]

Bracker, A. S.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Butch, N. P.

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

Caha, O.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Chan, R. C. F.

S.-Y. Zhu, R. C. F. Chan, and C. P. Lee, “Spontaneous emission from a three-level atom,” Phys. Rev. A 52, 710 (1995).
[Crossref]

Chatzidakis, G. D.

G. D. Chatzidakis and V. Yannopapas, “Strong electromagnetic coupling in dimers of topological-insulator nanoparticles and quantum emitters,” Phys. Rev. B 101, 165410 (2020).
[Crossref]

Chen, H.

Y.-P. Yang, J.-P. Xu, H. Chen, and S.-Y. Zhu, “ Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100, 043601 (2008).
[Crossref]

Cheng, J.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Cuadra, J.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2018).
[Crossref]

Daniele, M.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Drew, H. D.

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

Dubroka, A.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Economou, S. E.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Evangelou, S.

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[Crossref]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics,” Phys. Rev. A 83, 055805 (2011).
[Crossref]

Evers, J.

M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, “Vacuum-induced processes in multi-level atoms,” Prog. Opt. 55, 85–197 (2010).
[Crossref]

G.-X. Li, J. Evers, and C. H. Keitel, “ Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B 80, 045102 (2009).
[Crossref]

M. Macovei, J. Evers, and C. H. Keitel, “Phase control of collective quantum dynamics,” Phys. Rev. Lett. 91, 233601 (2003).
[Crossref]

Ficek, Z.

Z. Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments (Springer-Verlag, 2005).

Friedmann, H.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[Crossref]

Friš, P.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Gammon, D.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Gao, J. Y.

Gao, J.-Y.

C.-L. Wang, Z.-H. Kang, S.-C. Tian, Y. Jiang, and J.-Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009).
[Crossref]

C.-L. Wang, A.-I. Li, X.-Y. Zhou, Z.-H. Kang, J. Yun, and J.-Y. Gao, “Investigation of spontaneously generated coherence in dressed states of 85Rb atoms,” Opt. Lett. 33, 687–689 (2008).
[Crossref]

Garraway, B. M.

B. M. Garraway and P. L. Knight, “Cavity modified quantum beats,” Phys. Rev. A 54, 3592 (1996).
[Crossref]

Ge, G.-Q.

X.-D. Zeng, Z.-H. Li, G.-Q. Ge, and M. S. Zubairy, “Quantum interference near graphene layers: observing the surface plasmons with transverse electric polarization,” Phys. Rev. A 99, 043811 (2019).
[Crossref]

Giannini, V.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

G. Siroki, D. K. K. Lee, P. D. Haynes, and V. Giannini, “Single-electron induced surface plasmons on a topological nanoparticle,” Nat. Commun. 7, 12375 (2016).
[Crossref]

Gong, S.-Q.

Y.-P. Niu and S.-Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
[Crossref]

E. Paspalakis, S.-Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

Guidi, M. C.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Gurudev Dutt, M. V.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Hanham, S. M.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Harrison, P.

P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots, 4th ed. (Wiley, 2016).

Haynes, P. D.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

G. Siroki, D. K. K. Lee, P. D. Haynes, and V. Giannini, “Single-electron induced surface plasmons on a topological nanoparticle,” Nat. Commun. 7, 12375 (2016).
[Crossref]

Holý, V.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Hroncek, M.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Hughes, S.

S. Hughes and G. S. Agarwal, “Anisotropy-induced quantum interference and population trapping between orthogonal quantum dot exciton states in semiconductor cavity systems,” Phys. Rev. Lett. 118, 063601 (2017).
[Crossref]

Humlicek, J.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Imamoglu, A.

A. Imamoglu, “Interference of radiatively broadened resonances,” Phys. Rev. A 40, 2835 (1989).
[Crossref]

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Jenkins, G. S.

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

Jha, P. K.

P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, “ Metasurface-enabled remote quantum interference,” Phys. Rev. Lett. 115, 025501 (2015).
[Crossref]

Jiang, C.

Jiang, Y.

C.-L. Wang, Z.-H. Kang, S.-C. Tian, Y. Jiang, and J.-Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009).
[Crossref]

Kang, Z.-H.

C.-L. Wang, Z.-H. Kang, S.-C. Tian, Y. Jiang, and J.-Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009).
[Crossref]

C.-L. Wang, A.-I. Li, X.-Y. Zhou, Z.-H. Kang, J. Yun, and J.-Y. Gao, “Investigation of spontaneously generated coherence in dressed states of 85Rb atoms,” Opt. Lett. 33, 687–689 (2008).
[Crossref]

Karanikolas, V.

I. Thanopulos, V. Karanikolas, and E. Paspalakis, “Non-Markovian spontaneous emission interference near a MoS2 nanodisk,” Opt. Lett. 44, 3510–3513 (2019).
[Crossref]

V. Karanikolas and E. Paspalakis, “Plasmon-induced quantum interference near carbon nanostructures,” J. Phys. Chem. C 122, 14788 (2018).
[Crossref]

Keitel, C. H.

M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, “Vacuum-induced processes in multi-level atoms,” Prog. Opt. 55, 85–197 (2010).
[Crossref]

G.-X. Li, J. Evers, and C. H. Keitel, “ Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B 80, 045102 (2009).
[Crossref]

M. Macovei, J. Evers, and C. H. Keitel, “Phase control of collective quantum dynamics,” Phys. Rev. Lett. 91, 233601 (2003).
[Crossref]

M. Macovei and C. H. Keitel, “Laser control of collective spontaneous emission,” Phys. Rev. Lett. 91, 123601 (2003).
[Crossref]

C. H. Keitel, “Narrowing spontaneous emission without intensity reduction,” Phys. Rev. Lett. 83, 1307 (1999).
[Crossref]

E. Paspalakis, C. H. Keitel, and P. L. Knight, “Fluorescence control through multiple interference mechanisms,” Phys. Rev. A 58, 4868 (1998).
[Crossref]

Kiffner, M.

M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, “Vacuum-induced processes in multi-level atoms,” Prog. Opt. 55, 85–197 (2010).
[Crossref]

Kirshenbaum, K.

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

Knight, P. L.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079 (1999).
[Crossref]

E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
[Crossref]

E. Paspalakis, S.-Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

E. Paspalakis, C. H. Keitel, and P. L. Knight, “Fluorescence control through multiple interference mechanisms,” Phys. Rev. A 58, 4868 (1998).
[Crossref]

B. M. Garraway and P. L. Knight, “Cavity modified quantum beats,” Phys. Rev. A 54, 3592 (1996).
[Crossref]

Kylstra, N. J.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079 (1999).
[Crossref]

Lee, C. P.

S.-Y. Zhu, R. C. F. Chan, and C. P. Lee, “Spontaneous emission from a three-level atom,” Phys. Rev. A 52, 710 (1995).
[Crossref]

Lee, D. K. K.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

G. Siroki, D. K. K. Lee, P. D. Haynes, and V. Giannini, “Single-electron induced surface plasmons on a topological nanoparticle,” Nat. Commun. 7, 12375 (2016).
[Crossref]

Li, A.-I.

Li, B.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Li, F.-L.

G. X. Li, F.-L. Li, and S.-Y. Zhu, “Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium,” Phys. Rev. A 64, 013819 (2001).
[Crossref]

Li, G. X.

G. X. Li, F.-L. Li, and S.-Y. Zhu, “Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium,” Phys. Rev. A 64, 013819 (2001).
[Crossref]

Li, G.-X.

G.-X. Li, J. Evers, and C. H. Keitel, “ Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B 80, 045102 (2009).
[Crossref]

Li, X.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Li, Z.-H.

X.-D. Zeng, Z.-H. Li, G.-Q. Ge, and M. S. Zubairy, “Quantum interference near graphene layers: observing the surface plasmons with transverse electric polarization,” Phys. Rev. A 99, 043811 (2019).
[Crossref]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref]

Liu, R.-B.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Lupi, S.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Macovei, M.

M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, “Vacuum-induced processes in multi-level atoms,” Prog. Opt. 55, 85–197 (2010).
[Crossref]

M. Macovei and C. H. Keitel, “Laser control of collective spontaneous emission,” Phys. Rev. Lett. 91, 123601 (2003).
[Crossref]

M. Macovei, J. Evers, and C. H. Keitel, “Phase control of collective quantum dynamics,” Phys. Rev. Lett. 91, 233601 (2003).
[Crossref]

Mattevi, C.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Menon, S.

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a lambda system,” Phys. Rev. A 57, 4014 (1998).
[Crossref]

Modinos, A.

R. Sainidou, N. Stefanou, and A. Modinos, “Green’s function formalism for phononic crystals,” Phys. Rev. B 69, 064301 (2004).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[Crossref]

Naik, G.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Navarro-Cia, M.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Ni, X.

P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, “ Metasurface-enabled remote quantum interference,” Phys. Rev. Lett. 115, 025501 (2015).
[Crossref]

Niu, Y.-P.

Y.-P. Niu and S.-Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
[Crossref]

Orlita, M.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Paglione, J.

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

Paspalakis, E.

I. Thanopulos, V. Karanikolas, and E. Paspalakis, “Non-Markovian spontaneous emission interference near a MoS2 nanodisk,” Opt. Lett. 44, 3510–3513 (2019).
[Crossref]

V. Karanikolas and E. Paspalakis, “Plasmon-induced quantum interference near carbon nanostructures,” J. Phys. Chem. C 122, 14788 (2018).
[Crossref]

I. Thanopulos, V. Yannopapas, and E. Paspalakis, “Non-Markovian dynamics in plasmon-induced spontaneous emission interference,” Phys. Rev. B 95, 075412 (2017).
[Crossref]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[Crossref]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics,” Phys. Rev. A 83, 055805 (2011).
[Crossref]

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-induced enhancement of quantum interference near metallic nanostructures,” Phys. Rev. Lett. 103, 063602 (2009).
[Crossref]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079 (1999).
[Crossref]

E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
[Crossref]

E. Paspalakis, S.-Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

E. Paspalakis, C. H. Keitel, and P. L. Knight, “Fluorescence control through multiple interference mechanisms,” Phys. Rev. A 58, 4868 (1998).
[Crossref]

Rider, M. S.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Sainidou, R.

R. Sainidou, N. Stefanou, and A. Modinos, “Green’s function formalism for phononic crystals,” Phys. Rev. B 69, 064301 (2004).
[Crossref]

Scully, M. O.

S.-Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388 (1996).
[Crossref]

Shalaev, V.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Sham, L. J.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Shegai, T.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2018).
[Crossref]

Siroki, G.

G. Siroki, D. K. K. Lee, P. D. Haynes, and V. Giannini, “Single-electron induced surface plasmons on a topological nanoparticle,” Nat. Commun. 7, 12375 (2016).
[Crossref]

Sokolikova, M.

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref]

Springholz, G.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Steel, D. G.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Stefanou, N.

R. Sainidou, N. Stefanou, and A. Modinos, “Green’s function formalism for phononic crystals,” Phys. Rev. B 69, 064301 (2004).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[Crossref]

Steiner, H.

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

Sun, L.

Sushkov, A. B.

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

Swain, S.

P. Zhou and S. Swain, “Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion,” Phys. Rev. Lett. 78, 832 (1997).
[Crossref]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995 (1996).
[Crossref]

Z. Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments (Springer-Verlag, 2005).

Syers, P.

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

Thanopulos, I.

I. Thanopulos, V. Karanikolas, and E. Paspalakis, “Non-Markovian spontaneous emission interference near a MoS2 nanodisk,” Opt. Lett. 44, 3510–3513 (2019).
[Crossref]

I. Thanopulos, V. Yannopapas, and E. Paspalakis, “Non-Markovian dynamics in plasmon-induced spontaneous emission interference,” Phys. Rev. B 95, 075412 (2017).
[Crossref]

Tian, S.-C.

C.-L. Wang, Z.-H. Kang, S.-C. Tian, Y. Jiang, and J.-Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009).
[Crossref]

Valavanis, A.

P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots, 4th ed. (Wiley, 2016).

Vitanov, N. V.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-induced enhancement of quantum interference near metallic nanostructures,” Phys. Rev. Lett. 103, 063602 (2009).
[Crossref]

V. Yannopapas and N. V. Vitanov, “Fluctuational electrodynamics in the presence of finite thermal sources,” Phys. Rev. Lett. 99, 053901 (2007).
[Crossref]

V. Yannopapas and N. V. Vitanov, “Electromagnetic Green’s tensor and local density of states calculations for collections of spherical scatterers,” Phys. Rev. B 75, 115124 (2007).
[Crossref]

Wang, C.-L.

C.-L. Wang, Z.-H. Kang, S.-C. Tian, Y. Jiang, and J.-Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009).
[Crossref]

C.-L. Wang, A.-I. Li, X.-Y. Zhou, Z.-H. Kang, J. Yun, and J.-Y. Gao, “Investigation of spontaneously generated coherence in dressed states of 85Rb atoms,” Opt. Lett. 33, 687–689 (2008).
[Crossref]

Wang, Y.

P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, “ Metasurface-enabled remote quantum interference,” Phys. Rev. Lett. 115, 025501 (2015).
[Crossref]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref]

Wersäll, M.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2018).
[Crossref]

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Wilson-Gordon, A. D.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[Crossref]

Wu, C.

P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, “ Metasurface-enabled remote quantum interference,” Phys. Rev. Lett. 115, 025501 (2015).
[Crossref]

Wu, J. H.

Xia, H.-R.

H.-R. Xia, C.-Y. Ye, and S.-Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032 (1996).
[Crossref]

Xu, J.-P.

Y.-P. Yang, J.-P. Xu, H. Chen, and S.-Y. Zhu, “ Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100, 043601 (2008).
[Crossref]

Xu, X.

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

Yang, Y.-P.

Y.-P. Yang, J.-P. Xu, H. Chen, and S.-Y. Zhu, “ Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100, 043601 (2008).
[Crossref]

Yannopapas, V.

G. D. Chatzidakis and V. Yannopapas, “Strong electromagnetic coupling in dimers of topological-insulator nanoparticles and quantum emitters,” Phys. Rev. B 101, 165410 (2020).
[Crossref]

I. Thanopulos, V. Yannopapas, and E. Paspalakis, “Non-Markovian dynamics in plasmon-induced spontaneous emission interference,” Phys. Rev. B 95, 075412 (2017).
[Crossref]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[Crossref]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics,” Phys. Rev. A 83, 055805 (2011).
[Crossref]

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-induced enhancement of quantum interference near metallic nanostructures,” Phys. Rev. Lett. 103, 063602 (2009).
[Crossref]

V. Yannopapas and N. V. Vitanov, “Fluctuational electrodynamics in the presence of finite thermal sources,” Phys. Rev. Lett. 99, 053901 (2007).
[Crossref]

V. Yannopapas and N. V. Vitanov, “Electromagnetic Green’s tensor and local density of states calculations for collections of spherical scatterers,” Phys. Rev. B 75, 115124 (2007).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[Crossref]

Ye, C.-Y.

H.-R. Xia, C.-Y. Ye, and S.-Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032 (1996).
[Crossref]

Yun, J.

Zeng, X.-D.

X.-D. Zeng, Z.-H. Li, G.-Q. Ge, and M. S. Zubairy, “Quantum interference near graphene layers: observing the surface plasmons with transverse electric polarization,” Phys. Rev. A 99, 043811 (2019).
[Crossref]

Zhang, H. F.

Zhang, X.

P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, “ Metasurface-enabled remote quantum interference,” Phys. Rev. Lett. 115, 025501 (2015).
[Crossref]

Zhou, P.

P. Zhou and S. Swain, “Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion,” Phys. Rev. Lett. 78, 832 (1997).
[Crossref]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995 (1996).
[Crossref]

Zhou, X.-Y.

Zhu, S.-Y.

Y.-P. Yang, J.-P. Xu, H. Chen, and S.-Y. Zhu, “ Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100, 043601 (2008).
[Crossref]

G. X. Li, F.-L. Li, and S.-Y. Zhu, “Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium,” Phys. Rev. A 64, 013819 (2001).
[Crossref]

H.-R. Xia, C.-Y. Ye, and S.-Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032 (1996).
[Crossref]

S.-Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388 (1996).
[Crossref]

S.-Y. Zhu, R. C. F. Chan, and C. P. Lee, “Spontaneous emission from a three-level atom,” Phys. Rev. A 52, 710 (1995).
[Crossref]

Zubairy, M. S.

X.-D. Zeng, Z.-H. Li, G.-Q. Ge, and M. S. Zubairy, “Quantum interference near graphene layers: observing the surface plasmons with transverse electric polarization,” Phys. Rev. A 99, 043811 (2019).
[Crossref]

ACS Photon. (1)

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2018).
[Crossref]

Comput. Phys. Commun. (2)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[Crossref]

J. Phys. Chem. C (1)

V. Karanikolas and E. Paspalakis, “Plasmon-induced quantum interference near carbon nanostructures,” J. Phys. Chem. C 122, 14788 (2018).
[Crossref]

Laser Photon. Rev. (1)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Nanoscale (1)

M. S. Rider, M. Sokolikova, S. M. Hanham, M. Navarro-Cia, P. D. Haynes, D. K. K. Lee, M. Daniele, M. C. Guidi, C. Mattevi, S. Lupi, and V. Giannini, “Experimental signature of a topological quantum dot,” Nanoscale 12, 22817–22825 (2020).
[Crossref]

Nat. Commun. (1)

G. Siroki, D. K. K. Lee, P. D. Haynes, and V. Giannini, “Single-electron induced surface plasmons on a topological nanoparticle,” Nat. Commun. 7, 12375 (2016).
[Crossref]

Opt. Commun. (1)

E. Paspalakis, S.-Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (13)

C.-L. Wang, Z.-H. Kang, S.-C. Tian, Y. Jiang, and J.-Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009).
[Crossref]

P. R. Berman, “Analysis of dynamical suppression of spontaneous emission,” Phys. Rev. A 58, 4886 (1998).
[Crossref]

E. Paspalakis, C. H. Keitel, and P. L. Knight, “Fluorescence control through multiple interference mechanisms,” Phys. Rev. A 58, 4868 (1998).
[Crossref]

B. M. Garraway and P. L. Knight, “Cavity modified quantum beats,” Phys. Rev. A 54, 3592 (1996).
[Crossref]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[Crossref]

Y.-P. Niu and S.-Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006).
[Crossref]

G. X. Li, F.-L. Li, and S.-Y. Zhu, “Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium,” Phys. Rev. A 64, 013819 (2001).
[Crossref]

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a lambda system,” Phys. Rev. A 57, 4014 (1998).
[Crossref]

S.-Y. Zhu, R. C. F. Chan, and C. P. Lee, “Spontaneous emission from a three-level atom,” Phys. Rev. A 52, 710 (1995).
[Crossref]

A. Imamoglu, “Interference of radiatively broadened resonances,” Phys. Rev. A 40, 2835 (1989).
[Crossref]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[Crossref]

X.-D. Zeng, Z.-H. Li, G.-Q. Ge, and M. S. Zubairy, “Quantum interference near graphene layers: observing the surface plasmons with transverse electric polarization,” Phys. Rev. A 99, 043811 (2019).
[Crossref]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics,” Phys. Rev. A 83, 055805 (2011).
[Crossref]

Phys. Rev. B (7)

I. Thanopulos, V. Yannopapas, and E. Paspalakis, “Non-Markovian dynamics in plasmon-induced spontaneous emission interference,” Phys. Rev. B 95, 075412 (2017).
[Crossref]

G.-X. Li, J. Evers, and C. H. Keitel, “ Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B 80, 045102 (2009).
[Crossref]

R. Sainidou, N. Stefanou, and A. Modinos, “Green’s function formalism for phononic crystals,” Phys. Rev. B 69, 064301 (2004).
[Crossref]

V. Yannopapas and N. V. Vitanov, “Electromagnetic Green’s tensor and local density of states calculations for collections of spherical scatterers,” Phys. Rev. B 75, 115124 (2007).
[Crossref]

A. Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlicek, “Interband absorption edge in the topological Bi(Te1-xSex)3,” Phys. Rev. B 96, 235202 (2017).
[Crossref]

G. D. Chatzidakis and V. Yannopapas, “Strong electromagnetic coupling in dimers of topological-insulator nanoparticles and quantum emitters,” Phys. Rev. B 101, 165410 (2020).
[Crossref]

N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B 81, 241301 (2010).
[Crossref]

Phys. Rev. Lett. (16)

P. Zhou and S. Swain, “Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion,” Phys. Rev. Lett. 78, 832 (1997).
[Crossref]

S.-Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388 (1996).
[Crossref]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995 (1996).
[Crossref]

Y.-P. Yang, J.-P. Xu, H. Chen, and S.-Y. Zhu, “ Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100, 043601 (2008).
[Crossref]

G. S. Agarwal, “Anisotropic vacuum-induced interference in decay channels,” Phys. Rev. Lett. 84, 5500 (2000).
[Crossref]

M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B. Liu, and L. J. Sham, “Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots,” Phys. Rev. Lett. 94, 227403 (2005).
[Crossref]

H.-R. Xia, C.-Y. Ye, and S.-Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032 (1996).
[Crossref]

C. H. Keitel, “Narrowing spontaneous emission without intensity reduction,” Phys. Rev. Lett. 83, 1307 (1999).
[Crossref]

M. Macovei and C. H. Keitel, “Laser control of collective spontaneous emission,” Phys. Rev. Lett. 91, 123601 (2003).
[Crossref]

E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
[Crossref]

M. Macovei, J. Evers, and C. H. Keitel, “Phase control of collective quantum dynamics,” Phys. Rev. Lett. 91, 233601 (2003).
[Crossref]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079 (1999).
[Crossref]

V. Yannopapas and N. V. Vitanov, “Fluctuational electrodynamics in the presence of finite thermal sources,” Phys. Rev. Lett. 99, 053901 (2007).
[Crossref]

P. K. Jha, X. Ni, C. Wu, Y. Wang, and X. Zhang, “ Metasurface-enabled remote quantum interference,” Phys. Rev. Lett. 115, 025501 (2015).
[Crossref]

S. Hughes and G. S. Agarwal, “Anisotropy-induced quantum interference and population trapping between orthogonal quantum dot exciton states in semiconductor cavity systems,” Phys. Rev. Lett. 118, 063601 (2017).
[Crossref]

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-induced enhancement of quantum interference near metallic nanostructures,” Phys. Rev. Lett. 103, 063602 (2009).
[Crossref]

Prog. Opt. (1)

M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, “Vacuum-induced processes in multi-level atoms,” Prog. Opt. 55, 85–197 (2010).
[Crossref]

Science (1)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref]

Other (2)

Z. Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments (Springer-Verlag, 2005).

P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots, 4th ed. (Wiley, 2016).

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. V-type three-level quantum emitter.
Fig. 2.
Fig. 2. Real and imaginary parts of the dielectric function of ${{\rm Bi}_2}{{\rm Te}_3}$, provided by Eq. (18).
Fig. 3.
Fig. 3. Computational setup. A quantum emitter (QE) lies at a distance $z$ from the surface of a thick slab of ${{\rm Bi}_2}{{\rm Te}_3}$. The arrows denote the two different oscillation orientations of the QE dipole moment. Air is taken to be the surrounding medium.
Fig. 4.
Fig. 4. Decay rates for a dipole placed horizontally and vertically, relative to the planar surface of ${{\rm Bi}_2}{{\rm Te}_3}$ as a function of frequency (spectra) for the distance $z = 6\,\,\unicode{x00B5}{\rm m}$ from the surface of ${{\rm Bi}_2}{{\rm Te}_3}$. The decay rates are normalized to the corresponding free-space value.
Fig. 5.
Fig. 5. Degree of QI, $p$, as a function of the distance from the planar surface of ${{\rm Bi}_2}{{\rm Te}_3}$, for various frequencies.
Fig. 6.
Fig. 6. Degree of QI, $p$, as a function of frequency (spectrum), for different distances from the planar surface of ${{\rm Bi}_2}{{\rm Te}_3}$.
Fig. 7.
Fig. 7. Degree of QI, $p$, as a function of both frequency and distance from the planar surface of ${{\rm Bi}_2}{{\rm Te}_3}$.
Fig. 8.
Fig. 8. Computational setup. A quantum emitter (QE) lies at a distance $z$ from the surface of a microsphere ${{\rm Bi}_2}{{\rm Te}_3}$. The arrows denote the two different oscillation orientations of the QE dipole moment.
Fig. 9.
Fig. 9. Decay rates for a dipole placed vertically and horizontally relative to the surface of a ${{\rm Bi}_2}{{\rm Te}_3}$ microsphere with a 2 µm radius, as a function of frequency (spectra), for a distance $z = 1\,\,\unicode{x00B5}{\rm m}$ from the surface of the sphere. The decay rates are normalized to the corresponding free-space value.
Fig. 10.
Fig. 10. Degree of QI, $p$, as a function of frequency (spectrum), for different distances from the surface of a ${{\rm Bi}_2}{{\rm Te}_3}$ microsphere with a 2 µm radius.
Fig. 11.
Fig. 11. Degree of QI, $p$, as a function of distance $z$ from the surface of a ${{\rm Bi}_2}{{\rm Te}_3}$ microsphere with a 2 µm radius, for various frequencies.
Fig. 12.
Fig. 12. Degree of QI, $p$, as a function of both frequency and distance from a ${{\rm Bi}_2}{{\rm Te}_3}$ microsphere with a 2 µm radius.
Fig. 13.
Fig. 13. Population dynamics of states $|2\rangle$ (solid curve with QI and dot-dashed curve without QI, i.e., with $p = 0$ or $\kappa = 0$), and $|3\rangle$ (dashed curve with QI and dotted curve without QI), when the QE is initially in state $|2\rangle$. (a) The QE is at position $z = 6\,\,\unicode{x00B5}{\rm m}$ from the ${{\rm Bi}_2}{{\rm Te}_3}$ slab, and the QE frequency is 2 THz. (b) The QE is at position $z = 1\,\,\unicode{x00B5}{\rm m}$ from a ${{\rm Bi}_2}{{\rm Te}_3}$ microsphere with a 2 µm radius, and the QE frequency is 12 THz.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d = d ( | 2 1 | ε ^ + | 3 1 | ε ^ + ) + H . c . ,
ε ^ ± = 1 / 2 ( e z ± i e x )
ρ ˙ 22 = 2 γ 2 ρ 22 κ 3 ρ 23 κ 3 ρ 32 ,
ρ ˙ 33 = 2 γ 3 ρ 33 κ 2 ρ 32 κ 2 ρ 23 ,
ρ ˙ 23 = [ γ 2 + γ 3 + i ( ω 2 ω 3 ) ] ρ 23 κ 2 ρ 22 κ 3 ρ 33 ,
ρ 11 + ρ 22 + ρ 33 = 1 ,
ρ nm = ρ mn .
γ 2 , 3 = m 2 ω 2 , 3 I m [ G ( r , r ; ω 2 , 3 ) + G ( r , r ; ω 2 , 3 ) ] ,
κ 2 , 3 = m 2 ω 2 , 3 I m [ G ( r , r ; ω 2 , 3 ) G ( r , r ; ω 2 , 3 ) ] .
γ 2 γ 3 = γ = Γ + Γ ,
κ 2 κ 3 = κ = Γ Γ ,
Γ = m 2 ω 0 I m [ G ( r , r ; ω 0 ) ] ,
Γ = m 2 ω 0 I m [ G ( r , r ; ω 0 ) ] .
p = ( Γ Γ ) / ( Γ + Γ ) .
G ii PP = g ii PP i 8 π 2 d 2 k 1 c 2 K z + v k ; i ( r ) × exp ( i K + r ) e ^ i ( K + ) ,
v k ; i ( r ) = R PP exp ( i K r ) e ^ i ( K )
K ± = ( k , ± [ q 2 k 2 ] 1 / 2 ) ,
ε inp ( ω ) = j = α , β , f ω pj 2 ω 0 j 2 ω 2 i γ j ω ,
ρ 22 ( t ) = 1 4 ( e Γ t + e Γ t ) 2 ,
ρ 33 ( t ) = 1 4 ( e Γ t e Γ t ) 2 .
ρ 22 ( t ) = e ( Γ + Γ ) t , ρ 33 ( t ) = 0 .