Abstract

High-resolution strain sensing based on long, high-finesse fiber Fabry–Perot interferometers (FFPIs) has been demonstrated with a special focus on the infrasonic frequency range. A novel dual-FFPI scheme allows the large environment-induced background at low frequencies to be suppressed, permitting high strain resolution limited only by excess electronic noise. Noise-equivalent strain resolution of ${{257}}\;{{{\rm p}\unicode{x03B5} /}}\surd {\rm{Hz}}$ has been achieved at 6 mHz, and the resolution improves to ${\sim}{{200}}\;{{{\rm f}\unicode{x03B5} /}}\surd {\rm{Hz}}$ between 4–20 Hz. Without the use of any additional optical frequency references and with only off-the shelf commercial components, these resolutions are much better than most in the prior reports. Especially, an improvement of a factor of 1.8 is achieved in comparison with the highest resolution reported so far near 5 Hz. The limiting factors of the current scheme have been analyzed in detail, and the application prospects have been demonstrated using an acoustic transducer. The work lays out the potential of using long FFPIs with high finesse for high-resolution fiber-optic sensing in the infrasonic frequency range.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Torsion and strain simultaneous measurement using a cascaded helical long-period grating

Lunlun Xian, Dongdong Wang, and Li Li
J. Opt. Soc. Am. B 37(5) 1307-1311 (2020)

Highly sensitive strain sensor based on a long-period fiber grating with chain-shaped structure

Yiwei Ma, Xiaoyang Li, Senyu Wang, Yang Yi, Xudong Chen, Shuo Zhang, Shengjia Wang, Tao Geng, Chenguo Tong, Weimin Sun, and Libo Yuan
Appl. Opt. 59(33) 10278-10282 (2020)

White-light-driven resonant fiber-optic strain sensor

Shuangxiang Zhao, Qingwen Liu, and Zuyuan He
Opt. Lett. 45(18) 5217-5220 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription