Abstract

Accurate 3D computational fluid dynamics (CFD) modeling of flowing-gas K DPAL is presented, taking into account ionization and ion–electron recombination processes, ambipolar diffusion of K ions, and electron heating. Whereas in a static K DPAL with He buffer gas, the neutral K atoms in the lasing medium are depleted by these processes, the depletion can be mitigated by application of gas flow. The lowest gas velocity necessary for effective operation of a laser with He buffer is ${\sim}{500}\;{\rm m/s}$, and is much higher than previously estimated [Opt. Express 25, 30793 (2017) [CrossRef]  ]. The predictions of the model for different ${\rm He}/{{\rm CH}_4}$ mixtures are presented and verified by comparing them with experimental results obtained at the Air Force Institute of Technology [“Kinetics of higher lying potassium states after excitation of the D2 transition in the presence of helium,” dissertation (Air Force Institute of Technology, 2018)].

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription