Abstract

Thermal diffusion bonding of Yb:YAG and sapphire crystals was successfully implemented for the first time, and composite active elements having a geometry of a thin disk with an undoped cap were fabricated. The composites were tested in a continuous-wave thin-disk laser scheme at up to 400 W output average power, confirming that bonding strength is sufficient to operate at high thermal load. The radiation phase and polarization distortions as well as the small signal gain were studied. It is shown that depolarization is a significant problem in the considered composites; however, a proper choice of the parameters allows minimizing this impact.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
    [Crossref]
  2. C. Vicario, A. V. Ovchinniov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser,” Opt. Lett. 39, 6632–6635 (2014).
    [Crossref]
  3. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
    [Crossref]
  4. A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [Crossref]
  5. S.-S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
    [Crossref]
  6. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Krausz, “1  kW 200  mJ picosecond thin-disk laser system,” Opt. Lett. 42, 1381–1384 (2017).
    [Crossref]
  7. D. Kouznetsov and J.-F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B 25, 338–345 (2008).
    [Crossref]
  8. R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).
  9. A. Aleknavicius, M. Gabalis, A. Michailovas, and V. Girdauskas, “Aberrations induced by anti-ASE cap on thin-disk active element,” Opt. Express 21, 14530–14538 (2013).
    [Crossref]
  10. I. Kuznetsov, A. Pestov, I. Mukhin, M. Volkov, M. Zorina, N. Chkhalo, and O. Palashov, “Composite Yb:YAG/sapphire thin-disk active elements for high-energy high-average power lasers,” Opt. Lett. 45, 387–390 (2020).
    [Crossref]
  11. H. Ichikawa, K. Yamaguchi, T. Katsumata, and I. Shoji, “High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding,” Opt. Express 25, 22797–22804 (2017).
    [Crossref]
  12. H. C. Lee, H. Meissner, X. Mu, C. Liu, and W. Qiu, “Bonding force determination at AFB interfaces of single crystal sapphire composites,” Proc. SPIE 7302, 73020A (2009).
    [Crossref]
  13. I. Mukhin, E. Perevezentsev, and O. Palashov, “Fabrication of composite laser elements by a new thermal diffusion bonding method,” Opt. Mater. Express 4, 266–271 (2014).
    [Crossref]
  14. H. Chi, C. M. Baumgarten, E. Jankowska, K. A. Dehne, G. Murray, A. R. Meadows, M. Berrill, B. A. Reagan, and J. J. Rocca, “Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb:YAG active mirror laser amplifier,” J. Opt. Soc. Am. B 36, 1084–1090 (2019).
    [Crossref]
  15. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
    [Crossref]
  16. M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics (ASSP), OSA Technical Digest (Optical Society of America, 2005), paper TuB49.
  17. I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
    [Crossref]
  18. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  19. J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser—Power scaling to the kW regime in fundamental mode operation,” Proc. SPIE 7193, 71931V (2009).
    [Crossref]
  20. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23, 21064–21077 (2015).
    [Crossref]
  21. N. F. Andreev, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Four-pass Nd:YAG laser system with compensation of aberration and polarisation distortions of the wavefront,” Quantum Electron. 26, 19–22 (1996).
    [Crossref]

2020 (1)

2019 (2)

H. Chi, C. M. Baumgarten, E. Jankowska, K. A. Dehne, G. Murray, A. R. Meadows, M. Berrill, B. A. Reagan, and J. J. Rocca, “Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb:YAG active mirror laser amplifier,” J. Opt. Soc. Am. B 36, 1084–1090 (2019).
[Crossref]

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

2017 (2)

2015 (1)

2014 (4)

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
[Crossref]

S.-S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

C. Vicario, A. V. Ovchinniov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser,” Opt. Lett. 39, 6632–6635 (2014).
[Crossref]

I. Mukhin, E. Perevezentsev, and O. Palashov, “Fabrication of composite laser elements by a new thermal diffusion bonding method,” Opt. Mater. Express 4, 266–271 (2014).
[Crossref]

2013 (2)

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

A. Aleknavicius, M. Gabalis, A. Michailovas, and V. Girdauskas, “Aberrations induced by anti-ASE cap on thin-disk active element,” Opt. Express 21, 14530–14538 (2013).
[Crossref]

2009 (2)

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser—Power scaling to the kW regime in fundamental mode operation,” Proc. SPIE 7193, 71931V (2009).
[Crossref]

H. C. Lee, H. Meissner, X. Mu, C. Liu, and W. Qiu, “Bonding force determination at AFB interfaces of single crystal sapphire composites,” Proc. SPIE 7302, 73020A (2009).
[Crossref]

2008 (1)

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

1996 (1)

N. F. Andreev, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Four-pass Nd:YAG laser system with compensation of aberration and polarisation distortions of the wavefront,” Quantum Electron. 26, 19–22 (1996).
[Crossref]

1994 (1)

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Agranat, M. B.

Ahmed, M. A.

Aleknavicius, A.

Alismail, A.

Andreev, N. F.

N. F. Andreev, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Four-pass Nd:YAG laser system with compensation of aberration and polarisation distortions of the wavefront,” Quantum Electron. 26, 19–22 (1996).
[Crossref]

Ashitkov, S. I.

Barros, H. G.

Bauer, D.

Baumgarten, C. M.

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

H. Chi, C. M. Baumgarten, E. Jankowska, K. A. Dehne, G. Murray, A. R. Meadows, M. Berrill, B. A. Reagan, and J. J. Rocca, “Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb:YAG active mirror laser amplifier,” J. Opt. Soc. Am. B 36, 1084–1090 (2019).
[Crossref]

Beach, R. J.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).

Berrill, M.

Bibeau, C.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).

Bisson, J.-F.

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Brons, J.

Byer, R. L.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Chi, H.

Chkhalo, N.

Colby, E. R.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Cowan, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Dehne, K. A.

England, R. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Fattahi, H.

Fortov, V. E.

Gabalis, M.

Giesen, A.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser—Power scaling to the kW regime in fundamental mode operation,” Proc. SPIE 7193, 71931V (2009).
[Crossref]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics (ASSP), OSA Technical Digest (Optical Society of America, 2005), paper TuB49.

Girdauskas, V.

Gorjan, M.

Gottwald, T.

S.-S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Graf, T.

Hauri, C. P.

Honea, E. C.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).

Hugel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Ichikawa, H.

Jankowska, E.

Katsumata, T.

Kaumanns, M.

Khazanov, E. A.

N. F. Andreev, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Four-pass Nd:YAG laser system with compensation of aberration and polarisation distortions of the wavefront,” Quantum Electron. 26, 19–22 (1996).
[Crossref]

Killi, A.

Kouznetsov, D.

Krausz, F.

Krupke, W. F.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).

Kuhn, V.

S.-S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Kuznetsov, I.

Kuznetsov, I. I.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
[Crossref]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics (ASSP), OSA Technical Digest (Optical Society of America, 2005), paper TuB49.

Lee, H. C.

H. C. Lee, H. Meissner, X. Mu, C. Liu, and W. Qiu, “Bonding force determination at AFB interfaces of single crystal sapphire composites,” Proc. SPIE 7302, 73020A (2009).
[Crossref]

Leedle, K. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Liu, C.

H. C. Lee, H. Meissner, X. Mu, C. Liu, and W. Qiu, “Bonding force determination at AFB interfaces of single crystal sapphire composites,” Proc. SPIE 7302, 73020A (2009).
[Crossref]

Loescher, A.

Major, Z.

McGuinness, C.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

McNeur, J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Meadows, A. R.

Meissner, H.

H. C. Lee, H. Meissner, X. Mu, C. Liu, and W. Qiu, “Bonding force determination at AFB interfaces of single crystal sapphire composites,” Proc. SPIE 7302, 73020A (2009).
[Crossref]

Mende, J.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser—Power scaling to the kW regime in fundamental mode operation,” Proc. SPIE 7193, 71931V (2009).
[Crossref]

Metzger, T.

Michailovas, A.

Montazeri, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Mu, X.

H. C. Lee, H. Meissner, X. Mu, C. Liu, and W. Qiu, “Bonding force determination at AFB interfaces of single crystal sapphire composites,” Proc. SPIE 7302, 73020A (2009).
[Crossref]

Mukhin, I.

Mukhin, I. B.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
[Crossref]

Murray, G.

Negel, J.-P.

Negoita, V.

S.-S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Nubbemeyer, T.

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Ovchinniov, A. V.

Palashov, O.

Palashov, O. V.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
[Crossref]

N. F. Andreev, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Four-pass Nd:YAG laser system with compensation of aberration and polarisation distortions of the wavefront,” Quantum Electron. 26, 19–22 (1996).
[Crossref]

Pasmanik, G. A.

N. F. Andreev, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Four-pass Nd:YAG laser system with compensation of aberration and polarisation distortions of the wavefront,” Quantum Electron. 26, 19–22 (1996).
[Crossref]

Payne, S. A.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).

Peralta, E. A.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Perevezentsev, E.

Pestov, A.

Powell, H.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).

Pronin, O.

Qiu, W.

H. C. Lee, H. Meissner, X. Mu, C. Liu, and W. Qiu, “Bonding force determination at AFB interfaces of single crystal sapphire composites,” Proc. SPIE 7302, 73020A (2009).
[Crossref]

Reagan, B. A.

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

H. Chi, C. M. Baumgarten, E. Jankowska, K. A. Dehne, G. Murray, A. R. Meadows, M. Berrill, B. A. Reagan, and J. J. Rocca, “Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb:YAG active mirror laser amplifier,” J. Opt. Soc. Am. B 36, 1084–1090 (2019).
[Crossref]

Rocca, J. J.

Rockwood, A. P.

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

Schad, S.-S.

S.-S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Schmid, E.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser—Power scaling to the kW regime in fundamental mode operation,” Proc. SPIE 7193, 71931V (2009).
[Crossref]

Schuhmann, K.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics (ASSP), OSA Technical Digest (Optical Society of America, 2005), paper TuB49.

Schwartz, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Shoji, I.

Shoujun, W.

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

Silin, D. E.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
[Crossref]

Soong, K.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Sozer, E. B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Speiser, J.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser—Power scaling to the kW regime in fundamental mode operation,” Proc. SPIE 7193, 71931V (2009).
[Crossref]

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics (ASSP), OSA Technical Digest (Optical Society of America, 2005), paper TuB49.

Spindler, G.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser—Power scaling to the kW regime in fundamental mode operation,” Proc. SPIE 7193, 71931V (2009).
[Crossref]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Stolzenburg, C.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics (ASSP), OSA Technical Digest (Optical Society of America, 2005), paper TuB49.

Sutter, D.

Sutton, S. B.

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).

Travish, G.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Ueffing, M.

Vadimova, O. L.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
[Crossref]

Vicario, C.

Volkov, M.

Voss, A.

Vyatkin, A. G.

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
[Crossref]

Wallmeroth, K.

S.-S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

Walz, D.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Wang, H.

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

Wang, Y.

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Witting, K.

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Wu, Z.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Yamaguchi, K.

Yin, L.

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

Zorina, M.

Appl. Phys. B (1)

A. Giesen, H. Hugel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

I. I. Kuznetsov, I. B. Mukhin, D. E. Silin, A. G. Vyatkin, O. L. Vadimova, and O. V. Palashov, “Thermal effects in end-pumped Yb:YAG thin-disk and Yb:YAG/YAG composite active element,” IEEE J. Quantum Electron. 50, 133–140 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

W. Shoujun, C. M. Baumgarten, Y. Wang, B. A. Reagan, A. P. Rockwood, H. Wang, and L. Yin, “High-power ultrashort pulse lasers to pump plasma-based soft X-ray lasers,” IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019).
[Crossref]

J. Opt. Soc. Am. B (2)

Nature (1)

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (1)

Proc. SPIE (3)

S.-S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959, 89590U (2014).
[Crossref]

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser—Power scaling to the kW regime in fundamental mode operation,” Proc. SPIE 7193, 71931V (2009).
[Crossref]

H. C. Lee, H. Meissner, X. Mu, C. Liu, and W. Qiu, “Bonding force determination at AFB interfaces of single crystal sapphire composites,” Proc. SPIE 7302, 73020A (2009).
[Crossref]

Quantum Electron. (1)

N. F. Andreev, O. V. Palashov, G. A. Pasmanik, and E. A. Khazanov, “Four-pass Nd:YAG laser system with compensation of aberration and polarisation distortions of the wavefront,” Quantum Electron. 26, 19–22 (1996).
[Crossref]

Other (3)

R. J. Beach, E. C. Honea, C. Bibeau, S. A. Payne, H. Powell, W. F. Krupke, and S. B. Sutton, “High average power scaleable thin-disk laser,” U.S. patent6,347,109 B1 (February12, 2002).

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, “Nonlinear decay of the excited state in Yb:YAG,” in Advanced Solid-State Photonics (ASSP), OSA Technical Digest (Optical Society of America, 2005), paper TuB49.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the method of thermal diffusion bonding.
Fig. 2.
Fig. 2. (a) Scheme of AE cooling and pumping. (b) Laser power versus absorbed pump power in 1-reflection scheme and versus incident pump power in 12-reflection scheme.
Fig. 3.
Fig. 3. Small signal gain as a function of incident pump power measured in experiment.
Fig. 4.
Fig. 4. (a) Experimental and theoretical phase distortion profiles. (b) Experimental and theoretical dependences of the optical power of thermal lens on incident pump power.
Fig. 5.
Fig. 5. (a) Experimental and theoretical phase aberration profiles. (b) Experimental and theoretical dependence of beam quality parameter ${{\rm M}^2}$ on incident pump power.
Fig. 6.
Fig. 6. Experimental and theoretical dependence of integral depolarization on incident pump power at the angle of incidence of 2.8° and 0°, respectively, at horizontal polarization of the input beam. Profile of depolarized component obtained in experiment.