Abstract

This work presents a study of a fully nonastigmatic design of a single-longitudinal-mode, wavelength-tunable, unidirectional alexandrite ring laser cavity and assessment of its performance compared to more complex laser design requiring astigmatism compensation. A “displaced mode” nonastigmatic laser cavity design eliminating astigmatic cavity elements is developed around an alexandrite crystal end-pumped by a low-brightness, high-power red diode laser pump system. Single-longitudinal-mode, continuous-wave operation is demonstrated with output power of 700 mW with an excellent ${\rm{TEM}}_{00}$ mode (${{\rm{M}}^{2}} \lt {1.1}$) across a wide pump power range. Wavelength tuning from 748–773 nm is produced using a birefringent filter plate. The nonastigmatic alexandrite laser design achieves better spatial quality and resilience to maintain ${{\rm{TEM}}_{00}}$ operation across wide variation in pump-induced lensing compared to the astigmatic design. To the best of our knowledge, this is the first wavelength-tunable, single-longitudinal-mode operation of a unidirectional alexandrite ring system in a fully nonastigmatic cavity regime.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Arora, R. Sarkar, V. K. Garg, and L. Arya, “Lasers for treatment of melasma and post-inflammatory hyperpigmentation,” J. Cutan. Aesthet. Surg. 5, 93–103 (2012).
    [Crossref]
  2. P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
    [Crossref]
  3. V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
    [Crossref]
  4. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers (Optical Society of America, 1990), Vol. 6, paper CL3.
  5. J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
    [Crossref]
  6. J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
    [Crossref]
  7. M. Fibrich, J. Sulc, and H. Jelinkova, “Alexandrite microchip lasers,” Opt. Express 27, 16975–16982 (2019).
    [Crossref]
  8. M. Damzen, G. Thomas, A. Teppitaksak, and A. Minassian, “Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions,” in International Conference on Space Optics (2014).
  9. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
    [Crossref]
  10. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
    [Crossref]
  11. M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25, 11622–11636 (2017).
    [Crossref]
  12. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
    [Crossref]
  13. W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable CW alexandrite lasers under diode end-pumping,” Opt. Express 26, 7771–7785 (2018).
    [Crossref]
  14. A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26, 14928–14935 (2018).
    [Crossref]
  15. X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26, 31129–31136 (2018).
    [Crossref]
  16. H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
    [Crossref]
  17. D. M. Kane, “Astigmatism compensation in off-axis laser resonators with two or more coupled foci,” Opt. Commun. 71, 113–118 (1989).
    [Crossref]
  18. K. Lin, Y. Lai, and W. Hsieh, “Simple analytical method of cavity design for astigmatism-compensated Kerr-lens mode-locked ring lasers and its applications,” J. Opt. Soc. Am. B 12, 468–475 (1995).
    [Crossref]
  19. W. Qiao, Z. Xiaojun, W. Yonggang, S. Liqun, and N. Hanben, “A simple method for astigmatic compensation of folded resonator without Brewster window,” Opt. Express 22, 2309–2316 (2014).
    [Crossref]
  20. C. Ramírez-Guerra, J. A. Moreno-Larios, M. Rosete-Aguilar, and J. Garduño-Mejía, “Mode-coupling enhancement by pump astigmatism correction in a Ti:sapphire femtosecond laser,” Appl. Opt. 55, 9889–9894 (2016).
    [Crossref]
  21. M. Strotkamp, A. Munk, B. Jungbluth, H. D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11, 413–422 (2019).
    [Crossref]

2019 (2)

M. Fibrich, J. Sulc, and H. Jelinkova, “Alexandrite microchip lasers,” Opt. Express 27, 16975–16982 (2019).
[Crossref]

M. Strotkamp, A. Munk, B. Jungbluth, H. D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11, 413–422 (2019).
[Crossref]

2018 (3)

2017 (1)

2016 (1)

2014 (2)

2012 (1)

P. Arora, R. Sarkar, V. K. Garg, and L. Arya, “Lasers for treatment of melasma and post-inflammatory hyperpigmentation,” J. Cutan. Aesthet. Surg. 5, 93–103 (2012).
[Crossref]

2000 (1)

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

1996 (1)

1995 (1)

1993 (1)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

1990 (1)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[Crossref]

1989 (1)

D. M. Kane, “Astigmatism compensation in off-axis laser resonators with two or more coupled foci,” Opt. Commun. 71, 113–118 (1989).
[Crossref]

1985 (1)

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

1980 (1)

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

1972 (1)

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Arora, P.

P. Arora, R. Sarkar, V. K. Garg, and L. Arya, “Lasers for treatment of melasma and post-inflammatory hyperpigmentation,” J. Cutan. Aesthet. Surg. 5, 93–103 (2012).
[Crossref]

Arya, L.

P. Arora, R. Sarkar, V. K. Garg, and L. Arya, “Lasers for treatment of melasma and post-inflammatory hyperpigmentation,” J. Cutan. Aesthet. Surg. 5, 93–103 (2012).
[Crossref]

Aschoff, H. E.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers (Optical Society of America, 1990), Vol. 6, paper CL3.

Baird, P. E. G.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Bakule, P.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Bösenberg, J.

Boshier, M. G.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Chin, T.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers (Optical Society of America, 1990), Vol. 6, paper CL3.

Cornish, S. L.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Damzen, M.

M. Damzen, G. Thomas, A. Teppitaksak, and A. Minassian, “Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions,” in International Conference on Space Optics (2014).

Damzen, M. J.

Dienes, A.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Fibrich, M.

Garduño-Mejía, J.

Garg, V. K.

P. Arora, R. Sarkar, V. K. Garg, and L. Arya, “Lasers for treatment of melasma and post-inflammatory hyperpigmentation,” J. Cutan. Aesthet. Surg. 5, 93–103 (2012).
[Crossref]

Gately, B. M.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[Crossref]

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

Hanben, N.

Harter, D. J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Heller, D. F.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[Crossref]

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Hoffmann, H. D.

M. Strotkamp, A. Munk, B. Jungbluth, H. D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11, 413–422 (2019).
[Crossref]

Hoffmann, H.-D.

Höffner, J.

M. Strotkamp, A. Munk, B. Jungbluth, H. D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11, 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26, 14928–14935 (2018).
[Crossref]

Hsieh, W.

Ippen, E. P.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Jelinkova, H.

Jenssen, H.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Jungbluth, B.

M. Strotkamp, A. Munk, B. Jungbluth, H. D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11, 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26, 14928–14935 (2018).
[Crossref]

Jungmann, K.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Kane, D. M.

D. M. Kane, “Astigmatism compensation in off-axis laser resonators with two or more coupled foci,” Opt. Commun. 71, 113–118 (1989).
[Crossref]

Kerridge-Johns, W. R.

Kogelnik, H.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Krasinski, J. S.

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[Crossref]

Kuper, J. W.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers (Optical Society of America, 1990), Vol. 6, paper CL3.

Lai, Y.

Lane, I. C.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Lin, K.

Liqun, S.

Lübken, F.-J.

Meyer, V.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Minassian, A.

Moreno-Larios, J. A.

Morris, R.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Morris, R. C.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Munk, A.

M. Strotkamp, A. Munk, B. Jungbluth, H. D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11, 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26, 14928–14935 (2018).
[Crossref]

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[Crossref]

O’Dell, E.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Pete, J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Peterson, O.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Poprawe, R.

Qiao, W.

Ramírez-Guerra, C.

Rosete-Aguilar, M.

Samelson, H.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Sandars, P. H. G.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Sarkar, R.

P. Arora, R. Sarkar, V. K. Garg, and L. Arya, “Lasers for treatment of melasma and post-inflammatory hyperpigmentation,” J. Cutan. Aesthet. Surg. 5, 93–103 (2012).
[Crossref]

Sathian, J.

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[Crossref]

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

Shank, C. V.

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Sheng, X.

Strotkamp, M.

M. Strotkamp, A. Munk, B. Jungbluth, H. D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11, 413–422 (2019).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26, 14928–14935 (2018).
[Crossref]

Sulc, J.

Tawy, G.

Teppitaksak, A.

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
[Crossref]

M. Damzen, G. Thomas, A. Teppitaksak, and A. Minassian, “Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions,” in International Conference on Space Optics (2014).

Thomas, G.

M. Damzen, G. Thomas, A. Teppitaksak, and A. Minassian, “Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions,” in International Conference on Space Optics (2014).

Thomas, G. M.

Toner, W. T.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Towrie, M.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Walling, J.

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Walling, J. C.

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Wulfmeyer, V.

Xiaojun, Z.

Yonggang, W.

Appl. Opt. (1)

Appl. Phys. B (1)

P. Bakule, P. E. G. Baird, M. G. Boshier, S. L. Cornish, D. F. Heller, K. Jungmann, I. C. Lane, V. Meyer, P. H. G. Sandars, W. T. Toner, M. Towrie, and J. C. Walling, “A chirp-compensated, injection-seeded alexandrite laser,” Appl. Phys. B 71, 11–17 (2000).
[Crossref]

Appl. Phys. Lett. (1)

R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990).
[Crossref]

CEAS Space J. (1)

M. Strotkamp, A. Munk, B. Jungbluth, H. D. Hoffmann, and J. Höffner, “Diode-pumped alexandrite laser for next generation satellite-based earth observation lidar,” CEAS Space J. 11, 413–422 (2019).
[Crossref]

IEEE J. Quantum Electron. (3)

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

J. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

H. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

J. Cutan. Aesthet. Surg. (1)

P. Arora, R. Sarkar, V. K. Garg, and L. Arya, “Lasers for treatment of melasma and post-inflammatory hyperpigmentation,” J. Cutan. Aesthet. Surg. 5, 93–103 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. M. Kane, “Astigmatism compensation in off-axis laser resonators with two or more coupled foci,” Opt. Commun. 71, 113–118 (1989).
[Crossref]

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Other (2)

M. Damzen, G. Thomas, A. Teppitaksak, and A. Minassian, “Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions,” in International Conference on Space Optics (2014).

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers (Optical Society of America, 1990), Vol. 6, paper CL3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic of the compact diode end-pumped alexandrite rod laser. BM, back mirror; OC, output coupler; ${{\rm{F}}_{\rm p}}$, pump beam focusing lens; HWP, half-wave plate for the diode pump.
Fig. 2.
Fig. 2. Compact diode-pumped alexandrite laser output against absorbed pump power.
Fig. 3.
Fig. 3. (a) Ring cavity design and (b) laser output power against absorbed pump power for a ring-shaped alexandrite laser. The calculated slope efficiency is 19%.
Fig. 4.
Fig. 4. (a) Wavelength tuning curve and (b) (instrument-limited) spectrum at peak wavelength of bidirectional diode-pumped alexandrite nonastigmatic ring laser.
Fig. 5.
Fig. 5. Bidirectional ring laser output power versus absorbed pump power with 99.2% output coupling at an emission wavelength of 758 nm.
Fig. 6.
Fig. 6. Nonastigmatic unidirectional diode-pumped alexandrite ring laser with optical diode composed of Faraday rotator (FR) and half-wave plate (HWP): (a) schematic and (b) photograph of the system.
Fig. 7.
Fig. 7. (a) Temperature-induced refractive index profile of FEA results for diode-pumped alexandrite crystal (blue curve) and parabolic fit (red curve); (b) dioptic lensing power as a function of absorbed pump power.
Fig. 8.
Fig. 8. (a) “Displaced mode” cavity design and (b) adjustment of lens distances (${{\rm{d}}_1}$, ${{\rm{d}}_2}$) to compensate for the thermal lens (rod length 10 mm).
Fig. 9.
Fig. 9. (a) Lens distance parameters ${{\rm{d}}_1}$ and ${{\rm{d}}_2}$ against absorbed pump power; (b) pump-dependent variation of laser ${{\rm{TEM}}_{00}}$ mode beam radius at the thermal lens for lens parameters (${{\rm{d}}_1}$, ${{\rm{d}}_2}$) optimized at given pump power (black dotted line indicates pump size, wp ${\sim}{{70}}\;{\rm{\unicode{x00B5}{\rm m}}}$, the target for laser mode matching); (c) displaced beam waist position $d$ at different pump powers.
Fig. 10.
Fig. 10. Laser output power against absorbed pump power for the unidirectional alexandrite ring laser under single-frequency operation: (a) nonastigmatic rectangular cavity (slope efficiency 13%) and output power of 0.7 W (this work) and (b) astigmatic bow-tie cavity (slope efficiency 11%) and output power of 1.05 W [15].
Fig. 11.
Fig. 11. (a) Wavelength tuning curve for the unidirectional alexandrite ring laser; (b) spectral reflectivity curve of the OC.
Fig. 12.
Fig. 12. (a) Spectrum of CW diode-pumped alexandrite nonastigmatic unidirectional ring laser at peak wavelength 754.6 nm. (b) Spectral ring pattern from a Fabry–Pérot etalon showing single-longitudinal-mode operation.