Abstract

Light emission from inelastic electron tunneling has been demonstrated for 40 years. The ultrafast response rate and the ultracompact footprint make it promising for high-speed miniaturized light sources. But the application of the tunnel junction is limited by extremely low external quantum efficiency due to the low proportion of inelastic tunneling electron and wave vector mismatch between surface plasmons and photon emission. Here, we present a plasmonic-enhanced metal-insulator-semiconductor (MIS) junction coupled to a silicon waveguide with a coplanar electrode connected to a nanoantenna. The proposed tunnel junction can be fabricated using existing semiconductor planar processes to achieve controllable barrier thickness and quality for vertical current injection. Finally, an electrically driven light source with a radiation power nearly 8000 times higher than the spontaneous emission power in free space is shown to be achievable with the new structure at an operating wavelength of 1.31 µm. It is 510-fold higher than that of typical planar MIS junctions.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  2. L. Pavesi, “Silicon-based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).
    [Crossref]
  3. W. Du, T. Wang, H.-S. Chu, and C. A. Nijhuis, “Highly efficient on-chip direct electronic–plasmonic transducers,” Nat. Photonics 11, 623–627 (2017).
    [Crossref]
  4. M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
    [Crossref]
  5. J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
    [Crossref]
  6. J. Gimzewski, J. Sass, R. Schlitter, and J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435 (1989).
    [Crossref]
  7. J. Coombs, J. Gimzewski, B. Reihl, J. Sass, and R. Schlittler, “Photon emission experiments with the scanning tunnelling microscope,” J. Microsc. 152, 325–336 (1988).
    [Crossref]
  8. J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys. 32, 99 (1993).
    [Crossref]
  9. Y. Uehara, J. Watanabe, S. Fujikawa, and S. Ushioda, “Light-emission mechanism of Si-MOS tunnel junctions,” Phys. Rev. B 51, 2229–2238 (1995).
    [Crossref]
  10. F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
    [Crossref]
  11. B. Huang, S. Gao, Y. Liu, J. Wang, Z. Liu, Y. Guo, and W. Lu, “Nano-antenna enhanced waveguide integrated light source based on an MIS tunnel junction,” Opt. Lett. 44, 2330–2333 (2019).
    [Crossref]
  12. M. Parzefall and L. Novotny, “Light at the end of the tunnel,” ACS Photon. 5, 4195–4202 (2018).
    [Crossref]
  13. H. Göktaş, F. S. Gökhan, and V. J. Sorger, “Electrical-driven plasmon source of silicon based on quantum tunneling,” ACS Photon. 5, 4928–4936 (2018).
    [Crossref]
  14. A. Dathe, M. Ziegler, U. Hubner, W. Fritzsche, and O. Stranik, “Electrically excited plasmonic nanoruler for biomolecule detection,” Nano Lett. 16, 5728–5736 (2016).
    [Crossref]
  15. X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
    [Crossref]
  16. Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
    [Crossref]
  17. J. Watanabe, A. Takeuchi, Y. Uehara, and S. Ushioda, “Prism-coupled light emission from tunnel junctions containing interface roughness: experiment,” Phys. Rev. B 38, 12959–12965 (1988).
    [Crossref]
  18. B. Laks and D. L. Mills, “Photon emission from slightly roughened tunnel junctions,” Phys. Rev. B 20, 4962–4980 (1979).
    [Crossref]
  19. D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10, 703–756 (2018).
    [Crossref]
  20. K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, and X. Zhang, “Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers,” Opt. Express 24, 17916–17927 (2016).
    [Crossref]
  21. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
    [Crossref]
  22. A. F. Koenderink, “Single-photon nanoantennas,” ACS Photon. 4, 710–722 (2017).
    [Crossref]
  23. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
    [Crossref]
  24. S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
    [Crossref]
  25. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
    [Crossref]
  26. H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
    [Crossref]
  27. C. Chen, C. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
    [Crossref]
  28. Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
    [Crossref]
  29. A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
    [Crossref]
  30. I. Grekhov, A. Shulekin, and M. Vexler, “Visible hot electron electroluminescence from Si in tunnel MIS junction,” in 21st International Conference on Microelectronics (IEEE, 1997), pp. 165–168.
  31. K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
    [Crossref]
  32. P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol. 13, 159–164 (2018).
    [Crossref]
  33. T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
    [Crossref]
  34. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
    [Crossref]
  35. N. Abadia, F. Bello, C. Zhong, P. Flanigan, D. McCloskey, C. B. Wolf, A. Krichevsky, D. Wolf, F. Zong, and A. Samani, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26, 1752–1765 (2018).
    [Crossref]
  36. Ansys/Lumerical, https://www.lumerical.com .
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  38. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  39. B. N. Persson and A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
    [Crossref]
  40. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
    [Crossref]
  41. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
    [Crossref]
  42. E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
    [Crossref]
  43. I. M. Hancu, A. G. Curto, M. Castro-Lopez, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2014).
    [Crossref]
  44. Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
    [Crossref]
  45. W. Liu and Y. S. Kivshar, “Multipolar interference effects in nanophotonics,” Philos. Trans. R. Soc. A 375, 20160317 (2017).
    [Crossref]

2019 (2)

B. Huang, S. Gao, Y. Liu, J. Wang, Z. Liu, Y. Guo, and W. Lu, “Nano-antenna enhanced waveguide integrated light source based on an MIS tunnel junction,” Opt. Lett. 44, 2330–2333 (2019).
[Crossref]

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

2018 (8)

M. Parzefall and L. Novotny, “Light at the end of the tunnel,” ACS Photon. 5, 4195–4202 (2018).
[Crossref]

H. Göktaş, F. S. Gökhan, and V. J. Sorger, “Electrical-driven plasmon source of silicon based on quantum tunneling,” ACS Photon. 5, 4928–4936 (2018).
[Crossref]

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10, 703–756 (2018).
[Crossref]

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol. 13, 159–164 (2018).
[Crossref]

N. Abadia, F. Bello, C. Zhong, P. Flanigan, D. McCloskey, C. B. Wolf, A. Krichevsky, D. Wolf, F. Zong, and A. Samani, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26, 1752–1765 (2018).
[Crossref]

2017 (4)

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photon. 4, 710–722 (2017).
[Crossref]

W. Du, T. Wang, H.-S. Chu, and C. A. Nijhuis, “Highly efficient on-chip direct electronic–plasmonic transducers,” Nat. Photonics 11, 623–627 (2017).
[Crossref]

W. Liu and Y. S. Kivshar, “Multipolar interference effects in nanophotonics,” Philos. Trans. R. Soc. A 375, 20160317 (2017).
[Crossref]

2016 (5)

A. Dathe, M. Ziegler, U. Hubner, W. Fritzsche, and O. Stranik, “Electrically excited plasmonic nanoruler for biomolecule detection,” Nano Lett. 16, 5728–5736 (2016).
[Crossref]

K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, and X. Zhang, “Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers,” Opt. Express 24, 17916–17927 (2016).
[Crossref]

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref]

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
[Crossref]

2015 (4)

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

2014 (1)

I. M. Hancu, A. G. Curto, M. Castro-Lopez, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2014).
[Crossref]

2013 (3)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

2012 (2)

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[Crossref]

2011 (1)

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

2009 (1)

C. Chen, C. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[Crossref]

2008 (1)

L. Pavesi, “Silicon-based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).
[Crossref]

2007 (1)

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

1995 (1)

Y. Uehara, J. Watanabe, S. Fujikawa, and S. Ushioda, “Light-emission mechanism of Si-MOS tunnel junctions,” Phys. Rev. B 51, 2229–2238 (1995).
[Crossref]

1993 (1)

J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys. 32, 99 (1993).
[Crossref]

1992 (1)

B. N. Persson and A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
[Crossref]

1989 (1)

J. Gimzewski, J. Sass, R. Schlitter, and J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435 (1989).
[Crossref]

1988 (2)

J. Coombs, J. Gimzewski, B. Reihl, J. Sass, and R. Schlittler, “Photon emission experiments with the scanning tunnelling microscope,” J. Microsc. 152, 325–336 (1988).
[Crossref]

J. Watanabe, A. Takeuchi, Y. Uehara, and S. Ushioda, “Prism-coupled light emission from tunnel junctions containing interface roughness: experiment,” Phys. Rev. B 38, 12959–12965 (1988).
[Crossref]

1979 (1)

B. Laks and D. L. Mills, “Photon emission from slightly roughened tunnel junctions,” Phys. Rev. B 20, 4962–4980 (1979).
[Crossref]

1976 (1)

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Abadia, N.

Akimov, Y. A.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Arocas, J.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Baratoff, A.

B. N. Persson and A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
[Crossref]

Bar-Joseph, I.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Bello, F.

Bharadwaj, P.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

Bigourdan, F.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref]

Bobisch, C.

C. Chen, C. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[Crossref]

Boer-Duchemin, E.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

Bouhelier, A.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

Boyd, R. W.

Braun, K.

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

Buret, M.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Castro-Lopez, M.

I. M. Hancu, A. G. Curto, M. Castro-Lopez, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2014).
[Crossref]

Cazier, N.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Chacon, R.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Chen, C.

C. Chen, C. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Chu, H.-S.

W. Du, T. Wang, H.-S. Chu, and C. A. Nijhuis, “Highly efficient on-chip direct electronic–plasmonic transducers,” Nat. Photonics 11, 623–627 (2017).
[Crossref]

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Cohen-Hoshen, E.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Colliex, C.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Comtet, G.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

Coombs, J.

J. Coombs, J. Gimzewski, B. Reihl, J. Sass, and R. Schlittler, “Photon emission experiments with the scanning tunnelling microscope,” J. Microsc. 152, 325–336 (1988).
[Crossref]

Curto, A. G.

I. M. Hancu, A. G. Curto, M. Castro-Lopez, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2014).
[Crossref]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Dasgupta, A.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Dathe, A.

A. Dathe, M. Ziegler, U. Hubner, W. Fritzsche, and O. Stranik, “Electrically excited plasmonic nanoruler for biomolecule detection,” Nano Lett. 16, 5728–5736 (2016).
[Crossref]

des Francs, G. C.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Dickson, W.

P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol. 13, 159–164 (2018).
[Crossref]

Dong, Z.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Dos Santos, P.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

Du, W.

W. Du, T. Wang, H.-S. Chu, and C. A. Nijhuis, “Highly efficient on-chip direct electronic–plasmonic transducers,” Nat. Photonics 11, 623–627 (2017).
[Crossref]

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Dujardin, G.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

Emmerling, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Flanigan, P.

Fleischer, M.

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

Fritzsche, W.

A. Dathe, M. Ziegler, U. Hubner, W. Fritzsche, and O. Stranik, “Electrically excited plasmonic nanoruler for biomolecule detection,” Nano Lett. 16, 5728–5736 (2016).
[Crossref]

Fujikawa, S.

Y. Uehara, J. Watanabe, S. Fujikawa, and S. Ushioda, “Light-emission mechanism of Si-MOS tunnel junctions,” Phys. Rev. B 51, 2229–2238 (1995).
[Crossref]

Gao, S.

García de Abajo, F. J.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Gimzewski, J.

J. Gimzewski, J. Sass, R. Schlitter, and J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435 (1989).
[Crossref]

J. Coombs, J. Gimzewski, B. Reihl, J. Sass, and R. Schlittler, “Photon emission experiments with the scanning tunnelling microscope,” J. Microsc. 152, 325–336 (1988).
[Crossref]

Goh, K. E. J.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Goh, W. P.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Gökhan, F. S.

H. Göktaş, F. S. Gökhan, and V. J. Sorger, “Electrical-driven plasmon source of silicon based on quantum tunneling,” ACS Photon. 5, 4928–4936 (2018).
[Crossref]

Göktas, H.

H. Göktaş, F. S. Gökhan, and V. J. Sorger, “Electrical-driven plasmon source of silicon based on quantum tunneling,” ACS Photon. 5, 4928–4936 (2018).
[Crossref]

Gong, Q.

Greffet, J. J.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref]

Grekhov, I.

I. Grekhov, A. Shulekin, and M. Vexler, “Visible hot electron electroluminescence from Si in tunnel MIS junction,” in 21st International Conference on Microelectronics (IEEE, 1997), pp. 165–168.

Grossmann, S.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Guan, Z.

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

Guo, G.-C.

Guo, Y.

Gurunarayanan, S. P.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

Gurunatha, K.

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

Hammani, K.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Hancu, I. M.

I. M. Hancu, A. G. Curto, M. Castro-Lopez, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2014).
[Crossref]

Hauler, O.

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

He, X.

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

Hecht, B.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Henrard, L.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Heyns, M.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

Ho, W.

C. Chen, C. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[Crossref]

Hsu, S.-W.

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

Hu, H.

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

Huang, B.

Hubner, U.

A. Dathe, M. Ziegler, U. Hubner, W. Fritzsche, and O. Stranik, “Electrically excited plasmonic nanoruler for biomolecule detection,” Nano Lett. 16, 5728–5736 (2016).
[Crossref]

Hugonin, J. P.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref]

Jain, A.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref]

James Shirley, F.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Kamp, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Kern, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Kim, M. S.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Kivshar, Y. S.

W. Liu and Y. S. Kivshar, “Multipolar interference effects in nanophotonics,” Philos. Trans. R. Soc. A 375, 20160317 (2017).
[Crossref]

Knapp, A. G.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Kociak, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Koenderink, A. F.

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photon. 4, 710–722 (2017).
[Crossref]

Krasavin, A. V.

P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol. 13, 159–164 (2018).
[Crossref]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Krichevsky, A.

Kullock, R.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kuttge, M.

I. M. Hancu, A. G. Curto, M. Castro-Lopez, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2014).
[Crossref]

Laible, F.

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

Laks, B.

B. Laks and D. L. Mills, “Photon emission from slightly roughened tunnel junctions,” Phys. Rev. B 20, 4962–4980 (1979).
[Crossref]

Lambe, J.

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
[Crossref]

Le Moal, E.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

Lee, J.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Liu, W.

W. Liu and Y. S. Kivshar, “Multipolar interference effects in nanophotonics,” Philos. Trans. R. Soc. A 375, 20160317 (2017).
[Crossref]

Liu, Y.

B. Huang, S. Gao, Y. Liu, J. Wang, Z. Liu, Y. Guo, and W. Lu, “Nano-antenna enhanced waveguide integrated light source based on an MIS tunnel junction,” Opt. Lett. 44, 2330–2333 (2019).
[Crossref]

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[Crossref]

Liu, Z.

B. Huang, S. Gao, Y. Liu, J. Wang, Z. Liu, Y. Guo, and W. Lu, “Nano-antenna enhanced waveguide integrated light source based on an MIS tunnel junction,” Opt. Lett. 44, 2330–2333 (2019).
[Crossref]

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

Liz-Marzán, L. M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Lu, D.

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

Lu, W.

Maier, S. A.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Marguet, S.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

Markey, L.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Marquier, F.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref]

McCarthy, S. L.

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
[Crossref]

McCloskey, D.

McEnery, K. R.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Meixner, A. J.

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

Mennemanteuil, M. M.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Mills, D. L.

B. Laks and D. L. Mills, “Photon emission from slightly roughened tunnel junctions,” Phys. Rev. B 20, 4962–4980 (1979).
[Crossref]

Moshchalkov, V. V.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

Mukherjee, S.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

Murota, J.

J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys. 32, 99 (1993).
[Crossref]

Nasir, M. E.

P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol. 13, 159–164 (2018).
[Crossref]

Nelayah, J.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Nijhuis, C. A.

W. Du, T. Wang, H.-S. Chu, and C. A. Nijhuis, “Highly efficient on-chip direct electronic–plasmonic transducers,” Nat. Photonics 11, 623–627 (2017).
[Crossref]

T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
[Crossref]

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Novotny, L.

M. Parzefall and L. Novotny, “Light at the end of the tunnel,” ACS Photon. 5, 4195–4202 (2018).
[Crossref]

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

Özdemir, S. K.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Palomba, S.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[Crossref]

Pan, A.

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

Park, Y.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[Crossref]

Parzefall, M.

M. Parzefall and L. Novotny, “Light at the end of the tunnel,” ACS Photon. 5, 4195–4202 (2018).
[Crossref]

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref]

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Pavesi, L.

L. Pavesi, “Silicon-based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).
[Crossref]

Persson, B. N.

B. N. Persson and A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
[Crossref]

Png, C. E.

Prangsma, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Prangsma, J. C.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Qian, H.

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Radu, I. P.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

Reihl, B.

J. Coombs, J. Gimzewski, B. Reihl, J. Sass, and R. Schlittler, “Photon emission experiments with the scanning tunnelling microscope,” J. Microsc. 152, 325–336 (1988).
[Crossref]

Ren, X.-F.

Riley, C. T.

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

Rogez, B.

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

Samani, A.

Sass, J.

J. Gimzewski, J. Sass, R. Schlitter, and J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435 (1989).
[Crossref]

J. Coombs, J. Gimzewski, B. Reihl, J. Sass, and R. Schlittler, “Photon emission experiments with the scanning tunnelling microscope,” J. Microsc. 152, 325–336 (1988).
[Crossref]

Sauvan, C.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref]

Schlitter, R.

J. Gimzewski, J. Sass, R. Schlitter, and J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435 (1989).
[Crossref]

Schlittler, R.

J. Coombs, J. Gimzewski, B. Reihl, J. Sass, and R. Schlittler, “Photon emission experiments with the scanning tunnelling microscope,” J. Microsc. 152, 325–336 (1988).
[Crossref]

Schott, J.

J. Gimzewski, J. Sass, R. Schlitter, and J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435 (1989).
[Crossref]

Shalem, G.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Shi, J.

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

Shulekin, A.

I. Grekhov, A. Shulekin, and M. Vexler, “Visible hot electron electroluminescence from Si in tunnel MIS junction,” in 21st International Conference on Microelectronics (IEEE, 1997), pp. 165–168.

Smetanin, I.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Sorger, V. J.

H. Göktaş, F. S. Gökhan, and V. J. Sorger, “Electrical-driven plasmon source of silicon based on quantum tunneling,” ACS Photon. 5, 4928–4936 (2018).
[Crossref]

Stéphan, O.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Stranik, O.

A. Dathe, M. Ziegler, U. Hubner, W. Fritzsche, and O. Stranik, “Electrically excited plasmonic nanoruler for biomolecule detection,” Nano Lett. 16, 5728–5736 (2016).
[Crossref]

Takeuchi, A.

J. Watanabe, A. Takeuchi, Y. Uehara, and S. Ushioda, “Prism-coupled light emission from tunnel junctions containing interface roughness: experiment,” Phys. Rev. B 38, 12959–12965 (1988).
[Crossref]

Tame, M. S.

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Tang, J.

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

Taniguchi, T.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref]

Tao, A. R.

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

Taverna, D.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Tencé, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Troadec, C.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Tsakmakidis, K. L.

Uehara, Y.

Y. Uehara, J. Watanabe, S. Fujikawa, and S. Ushioda, “Light-emission mechanism of Si-MOS tunnel junctions,” Phys. Rev. B 51, 2229–2238 (1995).
[Crossref]

J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys. 32, 99 (1993).
[Crossref]

J. Watanabe, A. Takeuchi, Y. Uehara, and S. Ushioda, “Prism-coupled light emission from tunnel junctions containing interface roughness: experiment,” Phys. Rev. B 38, 12959–12965 (1988).
[Crossref]

Ushioda, S.

Y. Uehara, J. Watanabe, S. Fujikawa, and S. Ushioda, “Light-emission mechanism of Si-MOS tunnel junctions,” Phys. Rev. B 51, 2229–2238 (1995).
[Crossref]

J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys. 32, 99 (1993).
[Crossref]

J. Watanabe, A. Takeuchi, Y. Uehara, and S. Ushioda, “Prism-coupled light emission from tunnel junctions containing interface roughness: experiment,” Phys. Rev. B 38, 12959–12965 (1988).
[Crossref]

Uskov, A.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Van de Vondel, J.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

Van Dorpe, P.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

van Hulst, N. F.

I. M. Hancu, A. G. Curto, M. Castro-Lopez, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2014).
[Crossref]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Vardi, Y.

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Verellen, N.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

Vexler, M.

I. Grekhov, A. Shulekin, and M. Vexler, “Visible hot electron electroluminescence from Si in tunnel MIS junction,” in 21st International Conference on Microelectronics (IEEE, 1997), pp. 165–168.

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Wang, J.

Wang, P.

P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol. 13, 159–164 (2018).
[Crossref]

Wang, T.

W. Du, T. Wang, H.-S. Chu, and C. A. Nijhuis, “Highly efficient on-chip direct electronic–plasmonic transducers,” Nat. Photonics 11, 623–627 (2017).
[Crossref]

T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
[Crossref]

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Wang, X.

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

Watanabe, J.

Y. Uehara, J. Watanabe, S. Fujikawa, and S. Ushioda, “Light-emission mechanism of Si-MOS tunnel junctions,” Phys. Rev. B 51, 2229–2238 (1995).
[Crossref]

J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys. 32, 99 (1993).
[Crossref]

J. Watanabe, A. Takeuchi, Y. Uehara, and S. Ushioda, “Prism-coupled light emission from tunnel junctions containing interface roughness: experiment,” Phys. Rev. B 38, 12959–12965 (1988).
[Crossref]

Watanabe, K.

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref]

Weeber, J. C.

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Wolf, C. B.

Wolf, D.

Wu, L.

Xiao, Y.-F.

Xiong, X.

Xu, D.

Xu, H.

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

Yablonovitch, E.

Yang, J. K. W.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Yin, X.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[Crossref]

Zayats, A. V.

P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol. 13, 159–164 (2018).
[Crossref]

Zentgraf, T.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[Crossref]

Zhang, S.

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

Zhang, X.

K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, and X. Zhang, “Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers,” Opt. Express 24, 17916–17927 (2016).
[Crossref]

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[Crossref]

Zhao, J.

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

Zharinov, V. S.

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

Zhong, C.

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhu, D.

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

Ziegler, M.

A. Dathe, M. Ziegler, U. Hubner, W. Fritzsche, and O. Stranik, “Electrically excited plasmonic nanoruler for biomolecule detection,” Nano Lett. 16, 5728–5736 (2016).
[Crossref]

Zong, F.

ACS Photon. (5)

X. He, J. Tang, H. Hu, J. Shi, Z. Guan, S. Zhang, and H. Xu, “Electrically driven highly tunable cavity plasmons,” ACS Photon. 6, 823–829 (2019).
[Crossref]

Z. Dong, H.-S. Chu, D. Zhu, W. Du, Y. A. Akimov, W. P. Goh, T. Wang, K. E. J. Goh, C. Troadec, C. A. Nijhuis, and J. K. W. Yang, “Electrically-excited surface plasmon polaritons with directionality control,” ACS Photon. 2, 385–391 (2015).
[Crossref]

M. Parzefall and L. Novotny, “Light at the end of the tunnel,” ACS Photon. 5, 4195–4202 (2018).
[Crossref]

H. Göktaş, F. S. Gökhan, and V. J. Sorger, “Electrical-driven plasmon source of silicon based on quantum tunneling,” ACS Photon. 5, 4928–4936 (2018).
[Crossref]

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photon. 4, 710–722 (2017).
[Crossref]

Adv. Opt. Photon. (1)

Adv. Opt. Technol. (1)

L. Pavesi, “Silicon-based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).
[Crossref]

Appl. Mater. Today (1)

T. Wang and C. A. Nijhuis, “Molecular electronic plasmonics,” Appl. Mater. Today 3, 73–86 (2016).
[Crossref]

Beilstein J. Nanotechnol. (1)

A. Dasgupta, M. Buret, N. Cazier, M. M. Mennemanteuil, R. Chacon, K. Hammani, J. C. Weeber, J. Arocas, L. Markey, G. C. des Francs, A. Uskov, I. Smetanin, and A. Bouhelier, “Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale,” Beilstein J. Nanotechnol. 9, 1964–1976 (2018).
[Crossref]

Europhys. Lett. (1)

J. Gimzewski, J. Sass, R. Schlitter, and J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435 (1989).
[Crossref]

J. Microsc. (1)

J. Coombs, J. Gimzewski, B. Reihl, J. Sass, and R. Schlittler, “Photon emission experiments with the scanning tunnelling microscope,” J. Microsc. 152, 325–336 (1988).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. Watanabe, Y. Uehara, J. Murota, and S. Ushioda, “Light emission from Si-metal-oxide-semiconductor tunnel junctions,” Jpn. J. Appl. Phys. 32, 99 (1993).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Nano Lett. (7)

A. Dathe, M. Ziegler, U. Hubner, W. Fritzsche, and O. Stranik, “Electrically excited plasmonic nanoruler for biomolecule detection,” Nano Lett. 16, 5728–5736 (2016).
[Crossref]

S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, and P. Van Dorpe, “Electrically driven unidirectional optical nanoantennas,” Nano Lett. 17, 7433–7439 (2017).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

E. Le Moal, S. Marguet, B. Rogez, S. Mukherjee, P. Dos Santos, E. Boer-Duchemin, G. Comtet, and G. Dujardin, “An electrically excited nanoscale light source with active angular control of the emitted light,” Nano Lett. 13, 4198–4205 (2013).
[Crossref]

I. M. Hancu, A. G. Curto, M. Castro-Lopez, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14, 166–171 (2014).
[Crossref]

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012).
[Crossref]

Y. Vardi, E. Cohen-Hoshen, G. Shalem, and I. Bar-Joseph, “Fano resonance in an electrically driven plasmonic device,” Nano Lett. 16, 748–752 (2016).
[Crossref]

Nanophotonics (1)

K. Braun, F. Laible, O. Hauler, X. Wang, A. Pan, M. Fleischer, and A. J. Meixner, “Active optical antennas driven by inelastic electron tunneling,” Nanophotonics 7, 1503–1516 (2018).
[Crossref]

Nat. Commun. (1)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Nat. Nanotechnol. (2)

P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, and A. V. Zayats, “Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials,” Nat. Nanotechnol. 13, 159–164 (2018).
[Crossref]

M. Parzefall, P. Bharadwaj, A. Jain, T. Taniguchi, K. Watanabe, and L. Novotny, “Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions,” Nat. Nanotechnol. 10, 1058–1063 (2015).
[Crossref]

Nat. Photonics (3)

W. Du, T. Wang, H.-S. Chu, and C. A. Nijhuis, “Highly efficient on-chip direct electronic–plasmonic transducers,” Nat. Photonics 11, 623–627 (2017).
[Crossref]

H. Qian, S.-W. Hsu, K. Gurunatha, C. T. Riley, J. Zhao, D. Lu, A. R. Tao, and Z. Liu, “Efficient light generation from enhanced inelastic electron tunnelling,” Nat. Photonics 12, 485–488 (2018).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Nat. Phys. (2)

M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Philos. Trans. R. Soc. A (1)

W. Liu and Y. S. Kivshar, “Multipolar interference effects in nanophotonics,” Philos. Trans. R. Soc. A 375, 20160317 (2017).
[Crossref]

Phys. Rev. B (4)

J. Watanabe, A. Takeuchi, Y. Uehara, and S. Ushioda, “Prism-coupled light emission from tunnel junctions containing interface roughness: experiment,” Phys. Rev. B 38, 12959–12965 (1988).
[Crossref]

B. Laks and D. L. Mills, “Photon emission from slightly roughened tunnel junctions,” Phys. Rev. B 20, 4962–4980 (1979).
[Crossref]

Y. Uehara, J. Watanabe, S. Fujikawa, and S. Ushioda, “Light-emission mechanism of Si-MOS tunnel junctions,” Phys. Rev. B 51, 2229–2238 (1995).
[Crossref]

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Phys. Rev. Lett. (4)

B. N. Persson and A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992).
[Crossref]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[Crossref]

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for electrical generation of surface plasmon polaritons,” Phys. Rev. Lett. 116, 106803 (2016).
[Crossref]

J. Lambe and S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976).
[Crossref]

Science (1)

C. Chen, C. Bobisch, and W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009).
[Crossref]

Other (3)

I. Grekhov, A. Shulekin, and M. Vexler, “Visible hot electron electroluminescence from Si in tunnel MIS junction,” in 21st International Conference on Microelectronics (IEEE, 1997), pp. 165–168.

Ansys/Lumerical, https://www.lumerical.com .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Electrically driven MIS light source. (a) Three-dimensional (3D) schematic diagram of the Au nanoantenna-coupled MIS tunneling light source integrated with an Si waveguide; (b) schematic diagram of the tunnel junction. The energy band diagram with a bias voltage ${V_{\rm Bias}}$ is shown in the inset, where the electron inelastic tunneling through the oxidation barrier excites the photon radiation with energy $\hbar\omega \; \le \;e{V_{\rm Bias}}$.
Fig. 2.
Fig. 2. Influence of the dipole position on the photon emission of the tunneling light source. (a) Normalized LDOS ${\rho _p}/{\rho _0}$, extraction efficiency ${\eta _{\rm ext}}$ and (b) normalized extraction power ${P_{\rm ext}}/{P_0}$ at the resonant waveguide of 1.3 µm as a function of dipole positions. The schematic of the numerical model for calculating the light emission from dipole emitter placed in the 2-nm-thick barrier layer of the tunnel junction is shown in the inset, where the nanoantenna is 30-nm-thick, 40-nm-wide, 150-nm-long.
Fig. 3.
Fig. 3. Influence of multipolar interference on the normalized extraction power ${P_{\rm ext}}/{P_0}$. (a) Three configurations of excitation positions; (b) intensity profiles of the $y$ component of the electric field in the $x {-} z$ plane of the interface between metal and barrier and the $y {-} z$ plane of the middle of the nanoantenna at the resonant wavelength of 1.3 µm.
Fig. 4.
Fig. 4. Comparison of (a) normalized LDOS ${\rho _p}/{\rho _0}$, (b) extraction efficiency ${\eta _{\rm ext}}$ with the length of the nano-antenna varying from 140 to 320 nm with a step length of 10 nm as a function of wavelength. For a given length of the antenna, the peak excitation wavelength is predicted at the location on the dotted curve in the plot.
Fig. 5.
Fig. 5. Effect of different positions of the electrode strip in the nanoantenna and the strip widths on device performance. (a) The spectra for the different electrode strip positions as they are varied from one end of the antenna to the other in step lengths of 14.5 nm with the antenna length of 175 nm and electrode strip width of 30 nm; (b) the spectra for the different electrode strip widths connected in the middle of the antenna as it is varied from 10 to 175 nm. The latter value is the same as the length of the antenna.
Fig. 6.
Fig. 6. Performance of the proposed device. (a) 3D schematic structures of P-MIS and W-A-MIS junctions, respectively; (b) comparison of the normalized extraction power ${P_{\rm ext}}/{P_0}$ of the device and the typical planar MIS junction as a function of wavelength.
Fig. 7.
Fig. 7. Dependence of the extraction power to the tiny variation in the thickness of the (a) ${\rm{Si}}{{\rm{O}}_2}$ layer and (b) Au protrusion. In the former, the thickness of the barrier is constant, and the thickness of the ${\rm{Si}}{{\rm{O}}_2}$ layer changes from 4 to 6 nm. The latter shows that the thickness of the ${\rm{Si}}{{\rm{O}}_2}$ layer remains unchanged, while the thickness of the Au protrusion changes from 2 to 4 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Q E ( ω , V B i a s ) = η e p ( ω , V B i a s ) η a n t e n n a ( ω ) ,
γ e l = 2 π E F e V B i a s E F | t | 2 ρ b ( E ) ρ a ( E ) d E ,
γ i n e l = 2 π E F e V B i a s + ω E F | t | 2 ρ b ( E + ω ) ρ a ( E ) d E ,
η e p = γ i n e l γ e l + γ i n e l γ i n e l γ e l = | t t | 2 { 1 ω e V B i a s } .
| t t | 2 ρ p ρ 0 ,
Q E = η e p × η a n t e n n a ρ p ρ 0 × η a n t e n n a .
η a n t e n n a = P r a d / P t o t .
η e x t = P e x t P t o t = P e x t P r a d × P r a d P t o t .