Abstract

Solar absorbers are designed for absorbing visible, infrared, and ultraviolet frequencies. Most of the absorbers designed so far have been for absorbing visible frequencies, and there is a strong need for designing infrared absorbers and ultraviolet absorbers. We present a broadband near-infrared absorber using metamaterial gold resonators. The gold resonators are uniformly placed over the ${\rm{Si}}{{\rm{O}}_2}$ substrate in different patterns. All of these patterns’ solar absorbers are analyzed, and the results are presented in the form of reflection, transmission, absorption, electric field, permittivity, permeability, and refractive index. The parameter physical size is also varied, and results are observed in terms of reflection, absorption, and transmission. The optimized design is also obtained by analyzing all the design results. Comparative tables are also presented for all of these designs. The results are obtained for the near-infrared frequency range of 155 THz to 425 THz. The proposed uniform metamaterial absorber is applicable in photovoltaic applications and energy harvesting applications.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators

Samira Mehrabi, Mir Hamid Rezaei, and Abbas Zarifkar
J. Opt. Soc. Am. A 37(4) 697-704 (2020)

Dual-broadband and single ultrawideband absorbers from the terahertz to infrared regime

Saeedeh Barzegar-Parizi, Amir Ebrahimi, and Kamran Ghorbani
J. Opt. Soc. Am. B 38(9) 2628-2637 (2021)

Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm

Haoyuan Cai, Yi Sun, Xiaoping Wang, and Shuyue Zhan
Opt. Express 28(10) 15347-15359 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription