Abstract

Solar absorbers are designed for absorbing visible, infrared, and ultraviolet frequencies. Most of the absorbers designed so far have been for absorbing visible frequencies, and there is a strong need for designing infrared absorbers and ultraviolet absorbers. We present a broadband near-infrared absorber using metamaterial gold resonators. The gold resonators are uniformly placed over the ${\rm{Si}}{{\rm{O}}_2}$ substrate in different patterns. All of these patterns’ solar absorbers are analyzed, and the results are presented in the form of reflection, transmission, absorption, electric field, permittivity, permeability, and refractive index. The parameter physical size is also varied, and results are observed in terms of reflection, absorption, and transmission. The optimized design is also obtained by analyzing all the design results. Comparative tables are also presented for all of these designs. The results are obtained for the near-infrared frequency range of 155 THz to 425 THz. The proposed uniform metamaterial absorber is applicable in photovoltaic applications and energy harvesting applications.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. T. Ritchie and B. Window, “Applications of thin graded-index films to solar absorbers,” Appl. Opt. 16, 1438–1443 (1977).
    [Crossref]
  2. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
    [Crossref]
  3. P. T. Dang, K. Q. Le, J. H. Lee, and T. K. Nguyen, “A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces,” Micromachines 10, 673 (2019).
    [Crossref]
  4. S. K. Patel, S. Charo la, J. Parmar, and M. Ladumor, “Broadband metasurface solar absorber in the visible and near-infrared region,” Mater. Res. Express 6, 086213 (2019).
    [Crossref]
  5. P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
    [Crossref]
  6. S. Charola, S. K. Patel, J. Parmar, M. Ladumor, and V. Dhasarathan, “Broadband graphene-based metasurface solar absorber,” Microw. Opt. Technol. Lett. 62, 1366–1373 (2020).
    [Crossref]
  7. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials (Springer, 2010), p. 1.
  8. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
    [Crossref]
  9. S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
    [Crossref]
  10. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21, 14988–15013 (2013).
    [Crossref]
  11. J. Zhang, J. Tian, and L. Li, “A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays,” IEEE Photon. J. 10, 1–12 (2018).
    [Crossref]
  12. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
    [Crossref]
  13. M. H. Heidari and S. H. Sedighy, “Broadband wide-angle polarization-insensitive metasurface solar absorber,” J. Opt. Soc. Am. A 35, 522–525 (2018).
    [Crossref]
  14. E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
    [Crossref]
  15. E. Holdengreber, X. Gao, M. Mizrahi, S. E. Schacham, and E. Farber, “Superior impedance matching of THz antennas with HTSC Josephson junctions,” Supercond. Sci. Technol. 32, 074006 (2019).
    [Crossref]
  16. T. K. Nguyen, P. T. Dang, I. Park, and K. Q. Le, “Broadband THz radiation through tapered semiconductor gratings on high-index substrate,” J. Opt. Soc. Am. B 34, 583–589 (2017).
    [Crossref]
  17. F. Zeng, L. Ye, X. Xu, and X. Yang, “Tunable terahertz absorber using double-layer decussate graphene ribbon arrays,” in IEEE MTT-S International Wireless Symposium (IWS) (IEEE, 2018), pp. 1–3.
  18. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26, 111–114 (2013).
    [Crossref]
  19. T. Badloe, J. Mun, and amd J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 2361042 (2017).
    [Crossref]
  20. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23, 1679–1690 (2015).
    [Crossref]
  21. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref]
  22. B. X. Wang, Q. Xie, G. Dong, and W. Q. Huang, “Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 30, 1115–1118 (2018).
    [Crossref]
  23. N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
    [Crossref]
  24. B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2016).
    [Crossref]
  25. X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
    [Crossref]
  26. R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
    [Crossref]
  27. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
    [Crossref]
  28. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011), pp. 1–11.
  29. Z. Arefinia and A. Asgari, “Optimization study of a novel few-layer graphene/silicon quantum dots/silicon heterojunction solar cell through opto-electrical modeling,” IEEE J. Quantum Electron. 54, 1–6 (2017).
    [Crossref]
  30. S. K. Patel, M. Adumor, J. Parmar, and T. Guo, “Graphene-based tunable reflector superstructure grating,” Appl. Phys. A 125, 574 (2019).
    [Crossref]
  31. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
    [Crossref]
  32. S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
    [Crossref]
  33. H. Huang, H. Xia, Z. Guo, D. Xie, and H. Li, “Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions,” Appl. Phys. A 124, 429 (2018).
    [Crossref]
  34. P. B. Johson and R. W. Christy, “Optical constants of transition metals,” Phys. Rev. B 9, 5056–5070 (1974).
    [Crossref]
  35. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).
    [Crossref]
  36. P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11, 036008 (2017).
    [Crossref]
  37. B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
    [Crossref]
  38. T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
    [Crossref]
  39. H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
    [Crossref]
  40. F. Shan, F. Tang, L. Cao, and G. Fang, “Performance evaluations and applications of photovoltaic–thermal collectors and systems,” Renew. Sustain. Energy Rev. 33, 467–483 (2014).
    [Crossref]

2020 (3)

S. Charola, S. K. Patel, J. Parmar, M. Ladumor, and V. Dhasarathan, “Broadband graphene-based metasurface solar absorber,” Microw. Opt. Technol. Lett. 62, 1366–1373 (2020).
[Crossref]

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

2019 (7)

S. K. Patel, M. Adumor, J. Parmar, and T. Guo, “Graphene-based tunable reflector superstructure grating,” Appl. Phys. A 125, 574 (2019).
[Crossref]

S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
[Crossref]

T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
[Crossref]

P. T. Dang, K. Q. Le, J. H. Lee, and T. K. Nguyen, “A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces,” Micromachines 10, 673 (2019).
[Crossref]

S. K. Patel, S. Charo la, J. Parmar, and M. Ladumor, “Broadband metasurface solar absorber in the visible and near-infrared region,” Mater. Res. Express 6, 086213 (2019).
[Crossref]

E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
[Crossref]

E. Holdengreber, X. Gao, M. Mizrahi, S. E. Schacham, and E. Farber, “Superior impedance matching of THz antennas with HTSC Josephson junctions,” Supercond. Sci. Technol. 32, 074006 (2019).
[Crossref]

2018 (6)

J. Zhang, J. Tian, and L. Li, “A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays,” IEEE Photon. J. 10, 1–12 (2018).
[Crossref]

H. Huang, H. Xia, Z. Guo, D. Xie, and H. Li, “Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions,” Appl. Phys. A 124, 429 (2018).
[Crossref]

M. H. Heidari and S. H. Sedighy, “Broadband wide-angle polarization-insensitive metasurface solar absorber,” J. Opt. Soc. Am. A 35, 522–525 (2018).
[Crossref]

B. X. Wang, Q. Xie, G. Dong, and W. Q. Huang, “Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 30, 1115–1118 (2018).
[Crossref]

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

2017 (4)

Z. Arefinia and A. Asgari, “Optimization study of a novel few-layer graphene/silicon quantum dots/silicon heterojunction solar cell through opto-electrical modeling,” IEEE J. Quantum Electron. 54, 1–6 (2017).
[Crossref]

P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11, 036008 (2017).
[Crossref]

T. Badloe, J. Mun, and amd J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 2361042 (2017).
[Crossref]

T. K. Nguyen, P. T. Dang, I. Park, and K. Q. Le, “Broadband THz radiation through tapered semiconductor gratings on high-index substrate,” J. Opt. Soc. Am. B 34, 583–589 (2017).
[Crossref]

2016 (1)

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2016).
[Crossref]

2015 (4)

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
[Crossref]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23, 1679–1690 (2015).
[Crossref]

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
[Crossref]

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

2014 (2)

F. Shan, F. Tang, L. Cao, and G. Fang, “Performance evaluations and applications of photovoltaic–thermal collectors and systems,” Renew. Sustain. Energy Rev. 33, 467–483 (2014).
[Crossref]

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

2013 (3)

2011 (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[Crossref]

2010 (1)

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[Crossref]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).
[Crossref]

1977 (1)

1974 (1)

P. B. Johson and R. W. Christy, “Optical constants of transition metals,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Adumor, M.

S. K. Patel, M. Adumor, J. Parmar, and T. Guo, “Graphene-based tunable reflector superstructure grating,” Appl. Phys. A 125, 574 (2019).
[Crossref]

Akimov, Y. A.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[Crossref]

Arefinia, Z.

Z. Arefinia and A. Asgari, “Optimization study of a novel few-layer graphene/silicon quantum dots/silicon heterojunction solar cell through opto-electrical modeling,” IEEE J. Quantum Electron. 54, 1–6 (2017).
[Crossref]

Asgari, A.

Z. Arefinia and A. Asgari, “Optimization study of a novel few-layer graphene/silicon quantum dots/silicon heterojunction solar cell through opto-electrical modeling,” IEEE J. Quantum Electron. 54, 1–6 (2017).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011), pp. 1–11.

Badloe, T.

T. Badloe, J. Mun, and amd J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 2361042 (2017).
[Crossref]

Burgnies, L.

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

Cao, L.

F. Shan, F. Tang, L. Cao, and G. Fang, “Performance evaluations and applications of photovoltaic–thermal collectors and systems,” Renew. Sustain. Energy Rev. 33, 467–483 (2014).
[Crossref]

Charo la, S.

S. K. Patel, S. Charo la, J. Parmar, and M. Ladumor, “Broadband metasurface solar absorber in the visible and near-infrared region,” Mater. Res. Express 6, 086213 (2019).
[Crossref]

Charola, S.

S. Charola, S. K. Patel, J. Parmar, M. Ladumor, and V. Dhasarathan, “Broadband graphene-based metasurface solar absorber,” Microw. Opt. Technol. Lett. 62, 1366–1373 (2020).
[Crossref]

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
[Crossref]

Chen, J.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

Chen, S.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Cheng, H.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Christy, R. W.

P. B. Johson and R. W. Christy, “Optical constants of transition metals,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Cui, T. J.

Czaplewski, D.

Dang, P. T.

P. T. Dang, K. Q. Le, J. H. Lee, and T. K. Nguyen, “A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces,” Micromachines 10, 673 (2019).
[Crossref]

T. K. Nguyen, P. T. Dang, I. Park, and K. Q. Le, “Broadband THz radiation through tapered semiconductor gratings on high-index substrate,” J. Opt. Soc. Am. B 34, 583–589 (2017).
[Crossref]

Deng, H.

Dhasarathan, V.

S. Charola, S. K. Patel, J. Parmar, M. Ladumor, and V. Dhasarathan, “Broadband graphene-based metasurface solar absorber,” Microw. Opt. Technol. Lett. 62, 1366–1373 (2020).
[Crossref]

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

Dong, G.

B. X. Wang, Q. Xie, G. Dong, and W. Q. Huang, “Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 30, 1115–1118 (2018).
[Crossref]

Duan, X.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Ducournau, G.

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

Fang, G.

F. Shan, F. Tang, L. Cao, and G. Fang, “Performance evaluations and applications of photovoltaic–thermal collectors and systems,” Renew. Sustain. Energy Rev. 33, 467–483 (2014).
[Crossref]

Farber, E.

E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
[Crossref]

E. Holdengreber, X. Gao, M. Mizrahi, S. E. Schacham, and E. Farber, “Superior impedance matching of THz antennas with HTSC Josephson junctions,” Supercond. Sci. Technol. 32, 074006 (2019).
[Crossref]

Fernez, N.

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

Gao, J.

T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
[Crossref]

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
[Crossref]

Gao, X.

E. Holdengreber, X. Gao, M. Mizrahi, S. E. Schacham, and E. Farber, “Superior impedance matching of THz antennas with HTSC Josephson junctions,” Supercond. Sci. Technol. 32, 074006 (2019).
[Crossref]

Guo, T.

S. K. Patel, M. Adumor, J. Parmar, and T. Guo, “Graphene-based tunable reflector superstructure grating,” Appl. Phys. A 125, 574 (2019).
[Crossref]

S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
[Crossref]

Guo, Z.

H. Huang, H. Xia, Z. Guo, D. Xie, and H. Li, “Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions,” Appl. Phys. A 124, 429 (2018).
[Crossref]

Hao, J.

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

Heidari, M. H.

Holdengreber, E.

E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
[Crossref]

E. Holdengreber, X. Gao, M. Mizrahi, S. E. Schacham, and E. Farber, “Superior impedance matching of THz antennas with HTSC Josephson junctions,” Supercond. Sci. Technol. 32, 074006 (2019).
[Crossref]

Huang, H.

H. Huang, H. Xia, Z. Guo, D. Xie, and H. Li, “Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions,” Appl. Phys. A 124, 429 (2018).
[Crossref]

Huang, W. Q.

B. X. Wang, Q. Xie, G. Dong, and W. Q. Huang, “Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 30, 1115–1118 (2018).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26, 111–114 (2013).
[Crossref]

Jadeja, R.

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

Jani, C.

S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
[Crossref]

Jiang, W. X.

Jiao, H.

T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
[Crossref]

Johson, P. B.

P. B. Johson and R. W. Christy, “Optical constants of transition metals,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
[Crossref]

Khavkin, V.

E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
[Crossref]

Koh, W. S.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).
[Crossref]

Kosta, Y. P.

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

Ladumor, M.

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

S. Charola, S. K. Patel, J. Parmar, M. Ladumor, and V. Dhasarathan, “Broadband graphene-based metasurface solar absorber,” Microw. Opt. Technol. Lett. 62, 1366–1373 (2020).
[Crossref]

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
[Crossref]

S. K. Patel, S. Charo la, J. Parmar, and M. Ladumor, “Broadband metasurface solar absorber in the visible and near-infrared region,” Mater. Res. Express 6, 086213 (2019).
[Crossref]

Le, K. Q.

P. T. Dang, K. Q. Le, J. H. Lee, and T. K. Nguyen, “A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces,” Micromachines 10, 673 (2019).
[Crossref]

T. K. Nguyen, P. T. Dang, I. Park, and K. Q. Le, “Broadband THz radiation through tapered semiconductor gratings on high-index substrate,” J. Opt. Soc. Am. B 34, 583–589 (2017).
[Crossref]

Lee, J. H.

P. T. Dang, K. Q. Le, J. H. Lee, and T. K. Nguyen, “A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces,” Micromachines 10, 673 (2019).
[Crossref]

Lheurette, É.

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

Li, H.

H. Huang, H. Xia, Z. Guo, D. Xie, and H. Li, “Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions,” Appl. Phys. A 124, 429 (2018).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[Crossref]

Li, L.

J. Zhang, J. Tian, and L. Li, “A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays,” IEEE Photon. J. 10, 1–12 (2018).
[Crossref]

Li, X. F.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26, 111–114 (2013).
[Crossref]

Li, Z.

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
[Crossref]

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Lippens, D.

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

Liu, B.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

Liu, R.

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials (Springer, 2010), p. 1.

Liu, W.

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Ma, H. F.

Maslovski, S.

Mismer, C.

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

Mitchell, A.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
[Crossref]

Mizrahi, M.

E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
[Crossref]

E. Holdengreber, X. Gao, M. Mizrahi, S. E. Schacham, and E. Farber, “Superior impedance matching of THz antennas with HTSC Josephson junctions,” Supercond. Sci. Technol. 32, 074006 (2019).
[Crossref]

Moshe, A. G.

E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
[Crossref]

Mun, J.

T. Badloe, J. Mun, and amd J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 2361042 (2017).
[Crossref]

Nefedov, I.

Nguyen, T. K.

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

P. T. Dang, K. Q. Le, J. H. Lee, and T. K. Nguyen, “A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces,” Micromachines 10, 673 (2019).
[Crossref]

T. K. Nguyen, P. T. Dang, I. Park, and K. Q. Le, “Broadband THz radiation through tapered semiconductor gratings on high-index substrate,” J. Opt. Soc. Am. B 34, 583–589 (2017).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Park, G. S.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

Park, I.

Parmar, J.

S. Charola, S. K. Patel, J. Parmar, M. Ladumor, and V. Dhasarathan, “Broadband graphene-based metasurface solar absorber,” Microw. Opt. Technol. Lett. 62, 1366–1373 (2020).
[Crossref]

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
[Crossref]

S. K. Patel, M. Adumor, J. Parmar, and T. Guo, “Graphene-based tunable reflector superstructure grating,” Appl. Phys. A 125, 574 (2019).
[Crossref]

S. K. Patel, S. Charo la, J. Parmar, and M. Ladumor, “Broadband metasurface solar absorber in the visible and near-infrared region,” Mater. Res. Express 6, 086213 (2019).
[Crossref]

Patel, S. K.

S. Charola, S. K. Patel, J. Parmar, M. Ladumor, and V. Dhasarathan, “Broadband graphene-based metasurface solar absorber,” Microw. Opt. Technol. Lett. 62, 1366–1373 (2020).
[Crossref]

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

S. K. Patel, M. Adumor, J. Parmar, and T. Guo, “Graphene-based tunable reflector superstructure grating,” Appl. Phys. A 125, 574 (2019).
[Crossref]

S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
[Crossref]

S. K. Patel, S. Charo la, J. Parmar, and M. Ladumor, “Broadband metasurface solar absorber in the visible and near-infrared region,” Mater. Res. Express 6, 086213 (2019).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
[Crossref]

Phelan, P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011), pp. 1–11.

Qi, H.

T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
[Crossref]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
[Crossref]

Rho, J.

T. Badloe, J. Mun, and amd J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 2361042 (2017).
[Crossref]

Ritchie, I. T.

Rosengarten, G.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
[Crossref]

Rosenmann, D.

Rufangura, P.

P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11, 036008 (2017).
[Crossref]

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

Sabah, C.

P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11, 036008 (2017).
[Crossref]

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

Sang, T.

T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
[Crossref]

Schacham, S. E.

E. Holdengreber, X. Gao, M. Mizrahi, S. E. Schacham, and E. Farber, “Superior impedance matching of THz antennas with HTSC Josephson junctions,” Supercond. Sci. Technol. 32, 074006 (2019).
[Crossref]

E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
[Crossref]

Sedighy, S. H.

Shan, F.

F. Shan, F. Tang, L. Cao, and G. Fang, “Performance evaluations and applications of photovoltaic–thermal collectors and systems,” Renew. Sustain. Energy Rev. 33, 467–483 (2014).
[Crossref]

Shen, X.

Simovski, C.

Sivan, V. P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).
[Crossref]

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials (Springer, 2010), p. 1.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).
[Crossref]

Stan, L.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Su, Z.

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
[Crossref]

Tang, C.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

Tang, F.

F. Shan, F. Tang, L. Cao, and G. Fang, “Performance evaluations and applications of photovoltaic–thermal collectors and systems,” Renew. Sustain. Energy Rev. 33, 467–483 (2014).
[Crossref]

Tang, H.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

Tian, J.

J. Zhang, J. Tian, and L. Li, “A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays,” IEEE Photon. J. 10, 1–12 (2018).
[Crossref]

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

Tretyakov, S.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).
[Crossref]

Wang, B. X.

B. X. Wang, Q. Xie, G. Dong, and W. Q. Huang, “Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 30, 1115–1118 (2018).
[Crossref]

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2016).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26, 111–114 (2013).
[Crossref]

Wang, G. Z.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26, 111–114 (2013).
[Crossref]

Wang, H.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

Wang, L.

T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
[Crossref]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

Wang, L. L.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26, 111–114 (2013).
[Crossref]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
[Crossref]

Window, B.

Xia, H.

H. Huang, H. Xia, Z. Guo, D. Xie, and H. Li, “Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions,” Appl. Phys. A 124, 429 (2018).
[Crossref]

Xie, D.

H. Huang, H. Xia, Z. Guo, D. Xie, and H. Li, “Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions,” Appl. Phys. A 124, 429 (2018).
[Crossref]

Xie, N.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

Xie, Q.

B. X. Wang, Q. Xie, G. Dong, and W. Q. Huang, “Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 30, 1115–1118 (2018).
[Crossref]

Xu, X.

F. Zeng, L. Ye, X. Xu, and X. Yang, “Tunable terahertz absorber using double-layer decussate graphene ribbon arrays,” in IEEE MTT-S International Wireless Symposium (IWS) (IEEE, 2018), pp. 1–3.

Yang, X.

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
[Crossref]

F. Zeng, L. Ye, X. Xu, and X. Yang, “Tunable terahertz absorber using double-layer decussate graphene ribbon arrays,” in IEEE MTT-S International Wireless Symposium (IWS) (IEEE, 2018), pp. 1–3.

Ye, L.

F. Zeng, L. Ye, X. Xu, and X. Yang, “Tunable terahertz absorber using double-layer decussate graphene ribbon arrays,” in IEEE MTT-S International Wireless Symposium (IWS) (IEEE, 2018), pp. 1–3.

Yin, J.

Yin, X.

T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
[Crossref]

Zakaria, R.

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

Zeng, F.

F. Zeng, L. Ye, X. Xu, and X. Yang, “Tunable terahertz absorber using double-layer decussate graphene ribbon arrays,” in IEEE MTT-S International Wireless Symposium (IWS) (IEEE, 2018), pp. 1–3.

Zhai, X.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26, 111–114 (2013).
[Crossref]

Zhang, J.

J. Zhang, J. Tian, and L. Li, “A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays,” IEEE Photon. J. 10, 1–12 (2018).
[Crossref]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
[Crossref]

Zhao, J.

Zhao, X.

Zhu, X.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (2)

S. K. Patel, M. Adumor, J. Parmar, and T. Guo, “Graphene-based tunable reflector superstructure grating,” Appl. Phys. A 125, 574 (2019).
[Crossref]

H. Huang, H. Xia, Z. Guo, D. Xie, and H. Li, “Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions,” Appl. Phys. A 124, 429 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Arefinia and A. Asgari, “Optimization study of a novel few-layer graphene/silicon quantum dots/silicon heterojunction solar cell through opto-electrical modeling,” IEEE J. Quantum Electron. 54, 1–6 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2016).
[Crossref]

IEEE Photon. J. (1)

J. Zhang, J. Tian, and L. Li, “A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays,” IEEE Photon. J. 10, 1–12 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (2)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26, 111–114 (2013).
[Crossref]

B. X. Wang, Q. Xie, G. Dong, and W. Q. Huang, “Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 30, 1115–1118 (2018).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducournau, D. Lippens, and É. Lheurette, “Radiative quality factor in thin resonant metamaterial absorbers,” IEEE Trans. Microw. Theory Tech. 66, 1764–1772 (2018).
[Crossref]

J. Electromagn. Waves Appl. (1)

E. Holdengreber, A. G. Moshe, M. Mizrahi, V. Khavkin, S. E. Schacham, and E. Farber, “High sensitivity high Tc superconducting Josephson junction antenna for 200 GHz detection,” J. Electromagn. Waves Appl. 33, 193–203 (2019).
[Crossref]

J. Mater. Sci. (1)

R. Jadeja, S. Charola, S. K. Patel, J. Parmar, M. Ladumor, T. K. Nguyen, and V. Dhasarathan, “Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber,” J. Mater. Sci. 55, 3462–3469 (2020).
[Crossref]

J. Nanomater. (1)

T. Badloe, J. Mun, and amd J. Rho, “Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors,” J. Nanomater. 2017, 2361042 (2017).
[Crossref]

J. Nanophotonics (1)

P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11, 036008 (2017).
[Crossref]

J. Opt. (1)

X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, and J. Tian, “Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime,” J. Opt. 16, 125107 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Mater. Res. Express (1)

S. K. Patel, S. Charo la, J. Parmar, and M. Ladumor, “Broadband metasurface solar absorber in the visible and near-infrared region,” Mater. Res. Express 6, 086213 (2019).
[Crossref]

Micromachines (1)

P. T. Dang, K. Q. Le, J. H. Lee, and T. K. Nguyen, “A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces,” Micromachines 10, 673 (2019).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. Charola, S. K. Patel, J. Parmar, M. Ladumor, and V. Dhasarathan, “Broadband graphene-based metasurface solar absorber,” Microw. Opt. Technol. Lett. 62, 1366–1373 (2020).
[Crossref]

Nano Lett. (1)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12, 440–445 (2011).
[Crossref]

Nanosc. Res. Lett. (2)

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanosc. Res. Lett. 13, 153 (2018).
[Crossref]

T. Sang, J. Gao, X. Yin, H. Qi, L. Wang, and H. Jiao, “Angle-insensitive broadband bbsorption enhancement of graphene using a multi-grooved metasurface,” Nanosc. Res. Lett. 14, 105 (2019).
[Crossref]

Nanotechnology (1)

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

S. K. Patel, S. Charola, C. Jani, M. Ladumor, J. Parmar, and T. Guo, “Graphene-based highly efficient and broadband solar absorber,” Opt. Mater. 96, 109330 (2019).
[Crossref]

Phys. Rev. B (1)

P. B. Johson and R. W. Christy, “Optical constants of transition metals,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E 71, 036617 (2005).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref]

Renew. Sustain. Energy Rev. (1)

F. Shan, F. Tang, L. Cao, and G. Fang, “Performance evaluations and applications of photovoltaic–thermal collectors and systems,” Renew. Sustain. Energy Rev. 33, 467–483 (2014).
[Crossref]

Sensors Actuators A: Phys. (1)

S. K. Patel, J. Parmar, Y. P. Kosta, M. Ladumor, R. Zakaria, T. K. Nguyen, and V. Dhasarathan, “Design of graphene metasurface based sensitive infrared biosensor,” Sensors Actuators A: Phys. 301, 111767 (2020).
[Crossref]

Solar Cells (1)

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Solar Cells 137, 235–242 (2015).
[Crossref]

Supercond. Sci. Technol. (1)

E. Holdengreber, X. Gao, M. Mizrahi, S. E. Schacham, and E. Farber, “Superior impedance matching of THz antennas with HTSC Josephson junctions,” Supercond. Sci. Technol. 32, 074006 (2019).
[Crossref]

Vacuum (1)

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

Other (3)

T. J. Cui, D. R. Smith, and R. Liu, Metamaterials (Springer, 2010), p. 1.

F. Zeng, L. Ye, X. Xu, and X. Yang, “Tunable terahertz absorber using double-layer decussate graphene ribbon arrays,” in IEEE MTT-S International Wireless Symposium (IWS) (IEEE, 2018), pp. 1–3.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011), pp. 1–11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Metamaterial solar absorber design. (a) SOLSA design 3D view. (b) STLSA design 3D view. (c) Square array of gold resonator top view. (d) SOLCA design 3D view. (e) STELCA design 3D view. (f) Checkered layered design top view. (g) STALCA design 3D view. (h) Alternated checkered layer design top view. The height of the square resonators (${h_l}$) varied from 30 nm to 70 nm, the height of the substrate (${h_s}$) varied from 80 nm to 120 nm, and the height of the ground plane (${h_g}$) varied from 80 nm to 120 nm.
Fig. 2.
Fig. 2. Equivalent circuit model for the proposed absorber.
Fig. 3.
Fig. 3. (a) Reflection, (b) transmission, and (c) absorption for the given solar absorber for the different structures given by SOLSA, STLSA, SOLCA, STELCA, and STALCA varying from 155 THz to 425 THz. The highest absorption of 85% is observed for the STALCA design.
Fig. 4.
Fig. 4. (a) Reflection, (b) transmission, and (c) absorption of the proposed solar absorber (STALCA) design with respect to different heights of the square resonator (${{{h}}_l}$) varying from 30 nm to 70 nm. The highest absorption is noted for 70 nm height.
Fig. 5.
Fig. 5. (a) Transmission, (b) reflection, and (c) absorption of the proposed solar absorber (STALCA) concerning the different heights of ${\rm{Si}}{{\rm{O}}_2}$ (${h_s}$) varying from 80 nm to 120 nm. The highest absorption of 92% is observed for 120 nm thickness.
Fig. 6.
Fig. 6. (a) Transmission, (b) reflection, and (c) absorption of the proposed solar absorber (STALCA) concerning the different heights of the gold ground plane (${h_g}$) varying from 80 nm to 120 nm. The highest transmission of 88% is observed for the 120 nm height. The increase in height reduces the transmission.
Fig. 7.
Fig. 7. Absorption of solar absorber concerning different geometrical parameters in the 155 THz to 425 THz frequency range. (a) Height of square resonator (${{{h}}_l}$) versus frequency. (b) Height of ${\rm{Si}}{{\rm{O}}_2}$ (${{{h}}_s}$) versus frequency. (c) Height of gold ground plane (${{{h}}_g}$) versus frequency.
Fig. 8.
Fig. 8. Permittivity and permeability of metamaterial solar absorber. For most of the range, the negative permittivity and permeability are visible. Three peaks are around 190 THz, 290 THz, and 410 THz.
Fig. 9.
Fig. 9. Refractive index analysis of metamaterial solar absorber for 155 THz to 425 THz frequency range.
Fig. 10.
Fig. 10. Comparative graph of reflection, transmission, and absorption versus frequency varying from 155 THz to 425 THz.
Fig. 11.
Fig. 11. Electric field intensity for the designed structure for the frequencies (a) 155 THz, (b) 200 THz, (c) 300 THz, and (d) 400 THz. The unit of the electric field is $V/m$ and is maximum around the square resonator.

Tables (5)

Tables Icon

Table 1. Comparison of Absorption for Proposed Designs (STELCA, STALCA, SOLCA, STLSA, and SOLSA)

Tables Icon

Table 2. Comparison of Absorption for Different Gold Resonator Heights ( h l ) for STALCA Design

Tables Icon

Table 3. Comparison of Absorption for Different Substrate Heights ( h s ) for STALCA Design

Tables Icon

Table 4. Comparison of Absorption and Transmission for Different Ground Plane Heights ( h g ) for STALCA Design

Tables Icon

Table 5. Comparative Analysis of Absorption Results of the Proposed Design with Previously Published Designs

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = 1 T ( ω ) R ( ω ) .
R = | Z ( ω ) Z 0 ( ω ) Z ( ω ) + Z 0 ( ω ) | 2 ,
Z ( ω ) = μ 0 μ ( ω ) ε 0 ε ( ω ) ,
Z 0 = μ 0 ε 0 .
Δ × E = i ω μ 0 H ,
Δ × H = i ω ε 0 ε E ,
A ( ω ) = Q a b s ( ω ) Q i n c ( ω ) ,
Q a b s = ω ε 0 2 V I m [ ε ( ω ) ] | E | 2 d V ,
Q i n c = S F ( ω ) ,
Q a b s t o t = A ( ω ) F ( ω ) d ω .
Z 1 = j ω μ 0 ( ω μ 0 ε s ) 2 k 0 2 sin 2 θ × tan ( ( ω μ 0 ε s ) 2 k 0 2 sin 2 θ h s ) ,
1 Z in = 1 Z g + 1 Z m + 1 Z 1 ,
Z m Z 0 2 n 1 T ( n 1 ) ,
n ( ω ) = 1 k d cos 1 [ 1 2 S 21 ( 1 s 11 2 s 21 2 ) ] ,
z ( ω ) = ( 1 + S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2 ,
ε ( ω ) = n ( ω ) z ( ω ) ,
μ ( ω ) = n ( ω ) z ( ω ) .