Abstract

The temperature distribution inside a double-cladding optical fiber laser or amplifier is examined in detail. Traditionally, the quantum defect in the core is taken to be the main source of heating in an active optical fiber. However, contributions from the parasitic absorption of the signal and the pump may also play an important role, especially for low quantum defect or radiation-balanced lasers and amplifiers. The contributions to the heating in both the core and the inner-cladding are considered and analyzed in general terms in this paper. In particular, it is shown that if the maximum tolerable surface temperature of the fiber relative to the ambient is taken to be 300°C to avoid damaging the fiber’s outer polymer cladding, the core temperature rises only in the range of 0°C–5°C relative to the inner-cladding for an air-cooled fiber. However, for a water-cooled fiber, the core temperature can be higher than the inner-cladding by as much as 50°C, potentially changing a single-mode core to multimode due to the thermo-optic effect.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription