Abstract

Radiative cooling is potentially one of the most innovative approaches to reducing energy density in buildings and industry, as well as achieving higher levels of energy efficiency. Several studies have reported the design of spectrally selective layered structures for daytime passive radiative cooling. However, a comprehensive design of such systems requires the spectral behavior of different materials and radiative heat transfer mechanisms to be addressed together. Here, we introduce a design methodology for daytime passive radiative cooling with thin film filters which accounts for the spectral tailoring at the visible and infrared spectrum. The major difference of this method is that it does not require a predefined target ideal emittance. The results show that higher cooling powers are possible compared to the previously reported thin-film structures, which were designed from a purely spectral perspective. The underlying mechanisms of the resulting spectral profiles, which give rise to improved performance, are investigated by wave impedance analysis. Cooling powers up to ${100}\,{{\rm W/m}^2}$ are obtained with seven layers on Ag. The findings of this study indicate that structures with better performance in terms of cooling powers and temperature reduction rates can be obtained following the procedure discussed.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling

Aru Kong, Boyuan Cai, Peng Shi, and Xiao-cong Yuan
Opt. Express 27(21) 30102-30115 (2019)

Radiative heating and cooling with spectrally selective surfaces

C. G. Granqvist
Appl. Opt. 20(15) 2606-2615 (1981)

Radiative cooling with selectively infrared-emitting gases

Elias M. Lushiku and Claes-Goran Granqvist
Appl. Opt. 23(11) 1835-1843 (1984)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription