Abstract

One of the key frameworks for developing the theory of light–matter interactions in modern optics and photonics is quantum electrodynamics (QED). Contrasting with semiclassical theory, which depicts electromagnetic radiation as a classical wave, QED representations of quantized light fully embrace the concept of the photon. This tutorial review is a broad guide to cutting-edge applications of QED, providing an outline of its underlying foundation and an examination of its role in photon science. Alongside the full quantum methods, it is shown how significant distinctions can be drawn when compared to semiclassical approaches. Clear advantages in outcome arise in the predictive capacity and physical insights afforded by QED methods, which favors its adoption over other formulations of radiation–matter interaction.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semiclassical random electrodynamics: spontaneous emission and the Lamb shift

J. C. Camparo
J. Opt. Soc. Am. B 16(1) 173-181 (1999)

Overcoming the diffraction limit by multi-photon interference: a tutorial

Joachim Stöhr
Adv. Opt. Photon. 11(1) 215-313 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge University, 2010).
  2. E. A. Power, Introductory Quantum Electrodynamics (American Elsevier, 1965).
  3. R. G. Woolley, “The electrodynamics of atoms and molecules,” in Advances in Chemical Physics (Wiley, 1975), Vol. 33, pp. 153–233.
  4. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).
  5. D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (Dover, 1998).
  6. R. Loudon, The Quantum Theory of Light (Oxford University, 2000).
  7. D. L. Andrews and P. Allcock, Optical Harmonics in Molecular Systems (Wiley, 2002).
  8. A. Salam, Molecular Quantum Electrodynamics. Long-Range Intermolecular Interactions (Wiley, 2010).
  9. D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, “Perspective: quantum Hamiltonians for optical interactions,” J. Chem. Phys. 148, 040901 (2018).
    [Crossref]
  10. D. L. Andrews and D. S. Bradshaw, Introduction to Photon Science and Technology (SPIE, 2018).
  11. D. L. Andrews, “Physicality of the photon,” J. Phys. Chem. Lett. 4, 3878–3884 (2013).
    [Crossref]
  12. H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, 1944).
  13. L. I. Schiff, Quantum Mechanics (McGraw-Hill, 1955).
  14. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (CRC Press, 1978).
  15. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).
  16. N. Bloembergen, Nonlinear Optics, 4th ed. (World Scientific, 1996).
  17. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  18. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, “New determination of the fine structure constant from the electron g-value and QED,” Phys. Rev. Lett. 97, 030802 (2006).
    [Crossref]
  19. P. Schwerdtfeger, L. F. Pašteka, A. Punnett, and P. Bowman, “Relativistic and quantum electrodynamic effects in superheavy elements,” Nucl. Phys. A 944, 551–577 (2015).
    [Crossref]
  20. X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
    [Crossref]
  21. M. D. Crisp and E. T. Jaynes, “Radiative effects in semiclassical theory,” Phys. Rev. 179, 1253–1261 (1969).
    [Crossref]
  22. C. R. Stroud and E. T. Jaynes, “Long-term solutions in semiclassical radiation theory,” Phys. Rev. A 1, 106–121 (1970).
    [Crossref]
  23. R. van den Doel and J. J. J. Kokkedee, “Comment on the radiative level shift in the neoclassical radiation theory,” Phys. Rev. A 9, 1468–1469 (1974).
    [Crossref]
  24. P. W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1993).
  25. J. Schwinger, Selected Papers on Quantum Electrodynamics (Dover, 1958).
  26. P. W. Milonni, “Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory,” Phys. Rep. 25, 1–81 (1976).
    [Crossref]
  27. E. A. Power and S. Zienau, “Coulomb gauge in non-relativistic quantum electrodynamics and the shape of spectral lines,” Philos. Trans. R. Soc. A 251, 427–454 (1959).
    [Crossref]
  28. R. G. Woolley, “Molecular quantum electrodynamics,” Proc. R. Soc. A 321, 557–572 (1971).
    [Crossref]
  29. R. G. Woolley, “Power-Zienau-Woolley representations of nonrelativistic QED for atoms and molecules,” Phys. Rev. Res. 2, 013206 (2020).
    [Crossref]
  30. D. L. Andrews, “Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables,” J. Opt. 20, 033003 (2018).
    [Crossref]
  31. D. L. Andrews, “Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics,” Symmetry 10, 298 (2018).
    [Crossref]
  32. D. L. Andrews, “Effects of intrinsic local fields on molecular fluorescence and energy transfer: dipole mechanisms and surface potentials,” J. Phys. Chem. B 123, 5015–5023 (2019).
    [Crossref]
  33. D. L. Andrews, “Two-group Raman optical-activity revisited,” Faraday Discuss. 99, 375–382 (1994).
    [Crossref]
  34. D. L. Andrews and N. P. Blake, “Quantum electrodynamic study of bimolecular scattering effects in Raman-spectroscopy,” Phys. Rev. A 41, 2547–2565 (1990).
    [Crossref]
  35. D. L. Andrews, “An accretive mechanism for blue-shifted fluorescence in strongly pumped systems: resonance energy transfer with Raman emission,” J. Raman Spectrosc. 31, 791–796 (2000).
    [Crossref]
  36. M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Raman scattering mediated by neighboring molecules,” J. Chem. Phys. 144, 174304 (2016).
    [Crossref]
  37. K. A. Forbes, “Raman optical activity using twisted photons,” Phys. Rev. Lett. 122, 103201 (2019).
    [Crossref]
  38. K. A. Forbes and A. Salam, “Kramers-Heisenberg dispersion formula for scattering of twisted light,” Phys. Rev. A 100, 053413 (2019).
    [Crossref]
  39. G. Juzeliūnas, “Molecular-radiation and molecule-molecule processes in condensed media: a microscopic QED theory,” Chem. Phys. 198, 145–158 (1995).
    [Crossref]
  40. G. Juzeliūnas, “Microscopic theory of quantization of radiation in molecular dielectrics: normal-mode representation of operators for local and averaged (macroscopic) fields,” Phys. Rev. A 53, 3543–3558 (1996).
    [Crossref]
  41. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 2002).
  42. G. S. He, Nonlinear Optics and Photonics (Oxford University, 2014).
  43. J. S. Ford, A. Salam, and G. A. Jones, “A quantum electrodynamics description of quantum coherence and damping in condensed-phase energy transfer,” J. Phys. Chem. Lett. 10, 5654–5661 (2019).
    [Crossref]
  44. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  45. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  46. J. Weiner and F. Nunes, Light-Matter Interaction. Physics and Engineering at the Nanoscale (Oxford University, 2013).
  47. A. Zangwill, Modern Electrodynamics (Cambridge University, 2013).
  48. A. Salam, “On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules,” J. Chem. Phys. 124, 014302 (2006).
    [Crossref]
  49. D. L. Andrews and D. S. Bradshaw, “The role of virtual photons in nanoscale photonics,” Ann. Phys. (Berlin) 526, 173–186 (2014).
    [Crossref]
  50. K. A. Forbes and D. L. Andrews, “Chiral discrimination in optical binding,” Phys. Rev. A 91, 053824 (2015).
    [Crossref]
  51. D. L. Andrews, “Chirality in fluorescence and energy transfer,” Methods Appl. Fluoresc. 7, 032001 (2019).
    [Crossref]
  52. J. H. Shirley, “Solution of the Schrödinger equation with a Hamiltonian periodic in time,” Phys. Rev. 138, B979–B987 (1965).
    [Crossref]
  53. S. Guérin and H. R. Jauslin, “Control of quantum dynamics by laser pulses: adiabatic Floquet theory,” in Advances in Chemical Physics (Wiley, 2003), Vol. 125, pp. 147–268.
  54. G. Compagno, K. Dietz, and F. Persico, “QED theory of harmonic emission by a strongly driven atom,” J. Phys. B 27, 4779–4815 (1994).
    [Crossref]
  55. M. Šindelka, “Derivation of coupled Maxwell-Schrödinger equations describing matter-laser interaction from first principles of quantum electrodynamics,” Phys. Rev. A 81, 033833 (2010).
    [Crossref]
  56. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
    [Crossref]
  57. A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).
    [Crossref]
  58. C. H. Wilcox, Perturbation Theory and its Applications in Quantum Mechanics (Wiley/Chapman and Hall, 1966).
  59. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1992), p. 59.
  60. D. L. Andrews, S. Naguleswaran, and G. E. Stedman, “Phenomenological damping of nonlinear-optical response tensors,” Phys. Rev. A 57, 4925–4929 (1998).
    [Crossref]
  61. D. L. Andrews, L. C. Dávila Romero, and G. E. Stedman, “Polarizability and the resonance scattering of light: damping sign issues,” Phys. Rev. A 67, 055801 (2003).
    [Crossref]
  62. P. W. Milonni and R. W. Boyd, “Influence of radiative damping on the optical-frequency susceptibility,” Phys. Rev. A 69, 023814 (2004).
    [Crossref]
  63. P. R. Berman, R. W. Boyd, and P. W. Milonni, “Polarizability and the optical theorem for a two-level atom with radiative broadening,” Phys. Rev. A 74, 053816 (2006).
    [Crossref]
  64. P. W. Milonni, R. Loudon, P. R. Berman, and S. M. Barnett, “Linear polarizabilities of two- and three-level atoms,” Phys. Rev. A 77, 043835 (2008).
    [Crossref]
  65. D. S. Bradshaw and D. L. Andrews, “Interparticle interactions: energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation,” J. Phys. Chem. A 117, 75–82 (2013).
    [Crossref]
  66. E. Fermi, Nuclear Physics (University of Chicago, 1950).
  67. D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Quantum field representation of photon-molecule interactions,” Eur. J. Phys. 41, 025406 (2020).
    [Crossref]
  68. P. L. Knight and P. W. Milonni, “The Rabi frequency in optical spectra,” Phys. Rep. 66, 21–107 (1980).
    [Crossref]
  69. M. A. Parker, Physics of Optoelectronics (CRC Press, 2005).
  70. A. Salam, “Molecular quantum electrodynamics in the Heisenberg picture: a field theoretic viewpoint,” Int. Rev. Phys. Chem. 27, 405–448 (2008).
    [Crossref]
  71. E. A. Power and T. Thirunamachandran, “Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states,” Phys. Rev. A 47, 2539–2551 (1993).
    [Crossref]
  72. P. R. Berman, Introductory Quantum Mechanics (Springer, 2018), p. 557.
  73. A. Salam, Non-Relativistic QED Theory of the van der Waals Dispersion Interaction (Springer, 2016).
  74. R. P. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76, 769–789 (1949).
    [Crossref]
  75. R. D. Jenkins, D. L. Andrews, and L. C. Dávila Romero, “A new diagrammatic methodology for non-relativistic quantum electrodynamics,” J. Phys. B 35, 445–468 (2002).
    [Crossref]
  76. D. L. Andrews and T. Thirunamachandran, “On three-dimensional rotational averages,” J. Chem. Phys. 67, 5026–5033 (1977).
    [Crossref]
  77. D. L. Andrews and W. A. Ghoul, “Eighth rank isotropic tensors and rotational averages,” J. Phys. A 14, 1281–1290 (1981).
    [Crossref]
  78. G. Wagnière, “The evaluation of three-dimensional rotational averages,” J. Chem. Phys. 76, 473–480 (1982).
    [Crossref]
  79. D. H. Friese, M. T. P. Beerepoot, and K. Ruud, “Rotational averaging of multiphoton absorption cross sections,” J. Chem. Phys. 141, 204103 (2014).
    [Crossref]
  80. T. Begzjav and R. Nessler, “On three-dimensional rotational averages of odd-rank tensors,” Phys. Scr. 94, 105504 (2019).
    [Crossref]
  81. D. Marcuse, Principles of Quantum Electronics (Elsevier, 2012).
  82. E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
    [Crossref]
  83. R. D. Pyatt and D. P. Shelton, “Hyper-Rayleigh scattering from CH4, CD4, CF4, and CCl4,” J. Chem. Phys. 114, 9938–9946 (2001).
    [Crossref]
  84. E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
    [Crossref]
  85. E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
    [Crossref]
  86. J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
    [Crossref]
  87. M. D. Williams, J. S. Ford, and D. L. Andrews, “Hyper-Rayleigh scattering in centrosymmetric systems,” J. Chem. Phys. 143, 124301 (2015).
    [Crossref]
  88. K. A. Forbes, J. S. Ford, G. A. Jones, and D. L. Andrews, “Quantum delocalization in photon-pair generation,” Phys. Rev. A 96, 023850 (2017).
    [Crossref]
  89. D. L. Andrews and M. J. Harlow, “Phased and Boltzmann-weighted rotational averages,” Phys. Rev. A 29, 2796–2806 (1984).
    [Crossref]
  90. A. M. Stewart, “Why semiclassical electrodynamics is not gauge invariant,” J. Phys. A 33, 9165–9175 (2000).
    [Crossref]
  91. R. G. Woolley, “Charged particles, gauge invariance, and molecular electrodynamics,” Int. J. Quant. Chem. 74, 531–545 (1999).
    [Crossref]
  92. R. G. Woolley, “Gauge invariance in non–relativistic electrodynamics,” Proc. R. Soc. A 456, 1803–1819 (2000).
    [Crossref]
  93. J. F. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37, 1–18 (1965).
    [Crossref]
  94. D. L. Andrews, “A simple statistical treatment of multiphoton absorption,” Am. J. Phys. 53, 1001–1002 (1985).
    [Crossref]
  95. L. C. Dávila Romero, S. Naguleswaran, G. E. Stedman, and D. L. Andrews, “Electro-optic response in isotropic media,” Nonlinear Opt. 23, 191–201 (2000).
  96. D. L. Andrews, “Harmonic generation in free molecules,” J. Phys. B 13, 4091–4099 (1980).
    [Crossref]
  97. D. L. Andrews and N. P. Blake, “Forbidden nature of multipolar contributions to second-harmonic generation in isotropic fluids,” Phys. Rev. A 38, 3113–3115 (1988).
    [Crossref]
  98. D. S. Bradshaw and D. L. Andrews, “Quantum channels in nonlinear optical processes,” J. Nonlinear Opt. Phys. Mater. 18, 285–299 (2009).
    [Crossref]
  99. D. L. Andrews and D. S. Bradshaw, “A photonic basis for deriving nonlinear optical response,” Eur. J. Phys. 30, 239–251 (2009).
    [Crossref]
  100. D. L. Andrews and W. J. Meath, “On the role of permanent dipoles in second-harmonic generation,” J. Phys. B 26, 4633–4641 (1993).
    [Crossref]
  101. A. J. Moad and G. J. Simpson, “A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies,” J. Phys. Chem. B 108, 3548–3562 (2004).
    [Crossref]
  102. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968).
    [Crossref]
  103. D. S. Bradshaw and D. L. Andrews, “Optically induced forces and torques: interactions between nanoparticles in a laser beam,” Phys. Rev. A 72, 033816 (2005).
    [Crossref]
  104. A. Salam, “Molecular quantum electrodynamics of radiation-induced intermolecular forces,” in Advances in Quantum Chemistry, J. R. Sabin and E. Brandas, eds. (Academic, 2011), pp. 1–34.
  105. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [Crossref]
  106. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214, 15–24 (2002).
    [Crossref]
  107. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
    [Crossref]
  108. G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).
    [Crossref]
  109. G. Gouesbet, “Latest achievements in generalized Lorenz-Mie theories: a commented reference database,” Ann. Phys. (Berlin) 526, 461–489 (2014).
    [Crossref]
  110. D. L. Andrews and D. S. Bradshaw, Optical Nanomanipulation (Morgan & Claypool, 2016).
  111. H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73, 360–372 (1948).
    [Crossref]
  112. T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
    [Crossref]
  113. K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
    [Crossref]
  114. R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76, 026401 (2013).
    [Crossref]
  115. L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281, 865–870 (2008).
    [Crossref]
  116. J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, “Optical binding in nanoparticle assembly: potential energy landscapes,” Phys. Rev. A 78, 043805 (2008).
    [Crossref]
  117. Z. Yan, S. K. Gray, and N. F. Scherer, “Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters,” Nat. Commun. 5, 3751 (2014).
    [Crossref]
  118. T. Thirunamachandran, “Intermolecular interactions in the presence of an intense radiation field,” Mol. Phys. 40, 393–399 (1980).
    [Crossref]
  119. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
    [Crossref]
  120. D. S. Bradshaw, K. A. Forbes, J. M. Leeder, and D. L. Andrews, “Chirality in optical trapping and optical binding,” Photonics 2, 483–497 (2015).
    [Crossref]
  121. D. S. Bradshaw and D. L. Andrews, “Electromagnetic trapping of chiral molecules: orientational effects of the irradiating beam,” J. Opt. Soc. Am. B 32, B25–B31 (2015).
    [Crossref]
  122. K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Optical binding of nanoparticles,” Nanophotonics 9, 1–17 (2020).
    [Crossref]
  123. G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: the unified theory revisited,” J. Chem. Phys. 119, 2264–2274 (2003).
    [Crossref]
  124. D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach,” Eur. J. Phys. 25, 845–858 (2004).
    [Crossref]
  125. W. Heitler, The Quantum Theory of Radiation (Dover, 1984).
  126. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2009).
  127. L. D. Barron, L. Hecht, E. W. Blanch, and A. F. Bell, “Solution structure and dynamics of biomolecules from Raman optical activity,” Prog. Biophys. Mol. Biol. 73, 1–49 (2000).
    [Crossref]
  128. L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
    [Crossref]
  129. L. D. Barron, L. Hecht, I. H. McColl, and E. W. Blanch, “Raman optical activity comes of age,” Mol. Phys. 102, 731–744 (2004).
    [Crossref]
  130. S. Yamamoto, J. Kaminský, and P. Bouř, “Structure and vibrational motion of insulin from Raman optical activity spectra,” Anal. Chem. 84, 2440–2451 (2012).
    [Crossref]
  131. L. D. Barron, “The development of biomolecular Raman optical activity spectroscopy,” Biomed. Spectrosc. Imag. 4, 223–253 (2015).
    [Crossref]
  132. L. D. Barron and A. D. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
    [Crossref]
  133. L. D. Barron and A. D. Buckingham, “Rayleigh and Raman optical activity,” Annu. Rev. Phys. Chem. 26, 381–396 (1975).
    [Crossref]
  134. P. I. Haris, “Laurence Barron: the founding father of Raman optical activity,” Biomed. Spectrosc. Imag. 4, 219–222 (2015).
    [Crossref]
  135. E. A. Power and T. Thirunamachandran, “Circular dichroism: a general theory based on quantum electrodynamics,” J. Chem. Phys. 60, 3695–3701 (1974).
    [Crossref]
  136. D. L. Andrews, “Rayleigh and Raman optical activity: an analysis of the dependence on scattering angle,” J. Chem. Phys. 72, 4141–4144 (1980).
    [Crossref]
  137. D. L. Andrews and A. A. Demidov, Resonance Energy Transfer (Wiley, 1999).
  138. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley, 2008).
  139. D. L. Andrews and D. S. Bradshaw, “Resonance energy transfer,” in Encyclopedia of Applied Specteoscopy, D. L. Andrews, eds. (Wiley, 2009), pp. 533–554.
  140. G. A. Jones and D. S. Bradshaw, “Resonance energy transfer: from fundamental theory to recent applications,” Front. Phys. 7, 100 (2019).
    [Crossref]
  141. B. W. van der Meer, G. Coker, and S. Y. S. Chen, Resonance Energy Transfer: Theory and Data (VCH, 1994).
  142. J. S. Avery, “Resonance energy transfer and spontaneous photon emission,” Proc. Phys. Soc. London 88, 1–8 (1966).
    [Crossref]
  143. L. Gomberoff and E. A. Power, “The resonance transfer of excitation,” Proc. Phys. Soc. London 88, 281–284 (1966).
    [Crossref]
  144. D. L. Andrews, “A unified theory of radiative and radiationless molecular energy transfer,” Chem. Phys. 135, 195–201 (1989).
    [Crossref]
  145. A. Salam, “Resonant transfer of excitation between two molecules using Maxwell fields,” J. Chem. Phys. 122, 044113 (2005).
    [Crossref]
  146. J. E. Frost and G. A. Jones, “A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates,” New J. Phys. 16, 113067 (2014).
    [Crossref]
  147. R. Grinter and G. A. Jones, “Resonance energy transfer: the unified theory via vector spherical harmonics,” J. Chem. Phys. 145, 074107 (2016).
    [Crossref]
  148. A. Salam, “The unified theory of resonance energy transfer according to molecular quantum electrodynamics,” Atoms 6, 56 (2018).
    [Crossref]
  149. D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems,” Phys. Rev. B 94, 085133 (2016).
    [Crossref]
  150. D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” J. Chem. Phys. 147, 074117 (2017).
    [Crossref]
  151. W. J. Meath and E. A. Power, “On the effects of diagonal dipole matrix elements in multi-photon resonance profiles using two-level systems as models,” Mol. Phys. 51, 585–600 (1984).
    [Crossref]
  152. W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B 17, 763–781 (1984).
    [Crossref]
  153. W. J. Meath and E. A. Power, “On the interaction of elliptically polarized light with molecules: the effects of both permanent and transition multipole moments on multiphoton absorption and chiroptical effects,” J. Mod. Opt. 36, 977–1002 (1989).
    [Crossref]
  154. K. A. Forbes, J. S. Ford, and D. L. Andrews, “Nonlocalized generation of correlated photon pairs in degenerate down-conversion,” Phys. Rev. Lett. 118, 133602 (2017).
    [Crossref]
  155. P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Ghost imaging using optical correlations,” Laser Photon. Rev. 12, 1700143 (2018).
    [Crossref]
  156. K. A. Forbes, “Role of magnetic and diamagnetic interactions in molecular optics and scattering,” Phys. Rev. A 97, 053832 (2018).
    [Crossref]
  157. C. Schäfer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics,” ACS Photon. (in press).
    [Crossref]
  158. K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Identifying diamagnetic interactions in scattering and nonlinear optics,” Phys. Rev. A 94, 033837 (2016).
    [Crossref]
  159. A. Salam, “On the contribution of the diamagnetic coupling term to the two-body retarded dispersion interaction,” J. Phys. B 33, 2181–2193 (2000).
    [Crossref]
  160. S. Y. Buhmann, H. Safari, S. Scheel, and A. Salam, “Body-assisted dispersion potentials of diamagnetic atoms,” Phys. Rev. A 87, 012507 (2013).
    [Crossref]
  161. D. P. Craig, E. A. Power, and T. Thirunamachandran, “The dynamic terms in induced circular dichroism,” Proc. R. Soc. A 348, 19–38 (1976).
    [Crossref]
  162. S. Allenmark, “Induced circular dichroism by chiral molecular interaction,” Chirality 15, 409–422 (2003).
    [Crossref]
  163. D. Tedesco and C. Bertucci, “Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: classic approaches and new trends,” J. Pharm. Biomed. Anal. 113, 34–42 (2015).
    [Crossref]
  164. A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
    [Crossref]
  165. D. L. Andrews and T. Thirunamachandran, “Hyper-Raman scattering by chiral molecules,” J. Chem. Phys. 70, 1027–1030 (1979).
    [Crossref]
  166. D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
    [Crossref]
  167. D. S. Bradshaw and D. L. Andrews, “Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching,” J. Chem. Phys. 128, 144506 (2008).
    [Crossref]
  168. D. S. Bradshaw and D. L. Andrews, “The control of near-field optics: imposing direction through coupling with off-resonant laser light,” Appl. Phys. B 93, 13–20 (2008).
    [Crossref]
  169. D. S. Bradshaw and D. L. Andrews, “Mechanism for optical enhancement and suppression of fluorescence,” J. Phys. Chem. A 113, 6537–6539 (2009).
    [Crossref]
  170. D. L. Andrews and D. S. Bradshaw, “Off-resonant activation of optical emission,” Opt. Commun. 283, 4365–4367 (2010).
    [Crossref]
  171. D. S. Bradshaw and D. L. Andrews, “All-optical control of molecular fluorescence,” Phys. Rev. A 81, 013424 (2010).
    [Crossref]
  172. D. S. Bradshaw and D. L. Andrews, “All-optical switching between quantum dot nanoarrays,” Superlatt. Microstruct. 47, 308–313 (2010).
    [Crossref]
  173. J. M. Leeder, D. S. Bradshaw, and D. L. Andrews, “Laser-controlled fluorescence in two-level systems,” J. Phys. Chem. B 115, 5227–5233 (2011).
    [Crossref]
  174. D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Off-resonance control and all-optical switching: expanded dimensions in nonlinear optics,” Appl. Sci. 9, 4252 (2019).
    [Crossref]
  175. P. Allcock and D. L. Andrews, “Two-photon fluorescence: resonance energy transfer,” J. Chem. Phys. 108, 3089–3095 (1998).
    [Crossref]
  176. W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
    [Crossref]
  177. G. F. White, K. L. Litvinenko, S. R. Meech, D. L. Andrews, and A. J. Thomson, “Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin,” Photochem. Photobiol. Sci. 3, 47–55 (2004).
    [Crossref]
  178. M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
    [Crossref]
  179. N. Tian and Q.-H. Xu, “Enhanced two-photon excitation fluorescence by fluorescence resonance energy transfer using conjugated polymers,” Adv. Mater. 19, 1988–1991 (2007).
    [Crossref]
  180. S. Kim, H. Huang, H. E. Pudavar, Y. Cui, and P. N. Prasad, “Intraparticle energy transfer and fluorescence photoconversion in nanoparticles:  an optical highlighter nanoprobe for two-photon bioimaging,” Chem. Mater. 19, 5650–5656 (2007).
    [Crossref]
  181. S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
    [Crossref]
  182. E. J. Ngen, L. Xiao, P. Rajaputra, X. Yan, and Y. You, “Enhanced singlet oxygen generation from a porphyrin–rhodamine B dyad by two-photon excitation through resonance energy transfer,” Photochem. Photobiol. 89, 841–848 (2013).
    [Crossref]
  183. N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
    [Crossref]
  184. Y. Acosta, Q. Zhang, A. Rahaman, H. Ouellet, C. Xiao, J. Sun, and C. Li, “Imaging cytosolic translocation of mycobacteria with two-photon fluorescence resonance energy transfer microscopy,” Biomed. Opt. Express 5, 3990–4001 (2014).
    [Crossref]
  185. T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
    [Crossref]
  186. S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
    [Crossref]
  187. M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
    [Crossref]
  188. P. Allcock and D. L. Andrews, “Six-wave mixing: secular resonances in a higher-order mechanism for second-harmonic generation,” J. Phys. B 30, 3731–3742 (1997).
    [Crossref]
  189. I. D. Hands, S. Lin, S. R. Meech, and D. L. Andrews, “A quantum electrodynamical treatment of second harmonic generation through phase conjugate six-wave mixing: polarization analysis,” J. Chem. Phys. 109, 10580–10586 (1998).
    [Crossref]
  190. M. M. Coles, M. D. Williams, and D. L. Andrews, “Second harmonic generation in isotropic media: six-wave mixing of optical vortices,” Opt. Express 21, 12783–12789 (2013).
    [Crossref]
  191. K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd, “Conical harmonic generation in isotropic materials,” Phys. Rev. Lett. 88, 153901 (2002).
    [Crossref]
  192. D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42, 3097–3100 (2017).
    [Crossref]
  193. D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption,” J. Chem. Phys. 78, 1088–1094 (1983).
    [Crossref]
  194. D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption. II,” J. Chem. Phys. 80, 4753–4760 (1984).
    [Crossref]
  195. Z. Zheng, P. L. Saldanha, J. R. Rios Leite, and C. Fabre, “Two-photon-two-atom excitation by correlated light states,” Phys. Rev. A 88, 033822 (2013).
    [Crossref]
  196. J. K. Ku, G. Inoue, and D. W. Setser, “Two-photon laser-assisted reaction with xenon/molecular chlorine to form excited xenon chloride (XeCl*) and with xenon/iodine chloride (ICl) to form excited xenon chloride (XeCl*) and excited xenon iodide (XeI*),” J. Phys. Chem. 87, 2989–2993 (1983).
    [Crossref]
  197. M. E. Fajardo and V. A. Apkarian, “Cooperative photoabsorption induced charge transfer reaction dynamics in rare gas solids. I. Photodynamics of localized xenon chloride exciplexes,” J. Chem. Phys. 85, 5660–5681 (1986).
    [Crossref]
  198. M. Boivineau, J. Le Calvé, M. C. Castex, and C. Jouvet, “Formation of the XeBr* excimer by double optical excitation of the Xe–Br2 van der Waals complex,” J. Chem. Phys. 84, 4712–4713 (1986).
    [Crossref]
  199. L. Wiedeman, M. E. Fajardo, and V. A. Apkarian, “Electronic relaxation of xenon chloride (Xe2+Cl-) in solid and liquid xenon,” J. Phys. Chem. 92, 342–346 (1988).
    [Crossref]
  200. D. L. Andrews and K. P. Hopkins, “Synergistic effects in two-photon absorption: the quantum electrodynamics of bimolecular mean-frequency absorption,” Adv. Chem. Phys. 77, 39–102 (1990).
    [Crossref]
  201. J. Kohel and J. W. Keto, “Energy disposal in the two-photon laser-assisted reaction in xenon and chlorine gas mixtures,” J. Chem. Phys. 113, 10551–10559 (2000).
    [Crossref]
  202. E. Pedrozo-Peñafiel, R. R. Paiva, F. J. Vivanco, V. S. Bagnato, and K. M. Farias, “Two-photon cooperative absorption in colliding cold Na atoms,” Phys. Rev. Lett. 108, 253004 (2012).
    [Crossref]
  203. T. E. Li, H.-T. Chen, A. Nitzan, M. Sukharev, and J. E. Subotnik, “A necessary trade-off for semiclassical electrodynamics: accurate short-range Coulomb interactions versus the enforcement of causality?” J. Phys. Chem. Lett. 9, 5955–5961 (2018).
    [Crossref]
  204. T. E. Li, H.-T. Chen, and J. E. Subotnik, “Comparison of different classical, semiclassical, and quantum treatments of light-matter interactions: understanding energy conservation,” J. Chem. Theory Comput. 15, 1957–1973 (2019).
    [Crossref]
  205. J. L. Hemmerich, R. Bennett, and S. Y. Buhmann, “The influence of retardation and dielectric environments on interatomic Coulombic decay,” Nat. Commun. 9, 2934 (2018).
    [Crossref]
  206. T. Jahnke, “Interatomic and intermolecular Coulombic decay: the coming of age story,” J. Phys. B 48, 082001 (2015).
    [Crossref]
  207. L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66–S72 (2002).
    [Crossref]
  208. M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 (2013).
    [Crossref]
  209. M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral nanoemitter array: a launchpad for optical vortices,” Laser Photon. Rev. 7, 1088–1092 (2013).
    [Crossref]
  210. M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Direct generation of optical vortices,” Phys. Rev. A 89, 033837 (2014).
    [Crossref]
  211. R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
    [Crossref]
  212. M. Asano and T. Takahashi, “Analytical investigation of optical vortices emitted from a collectively polarized dipole array,” Opt. Express 23, 27998–28011 (2015).
    [Crossref]
  213. X. Zang and M. T. Lusk, “Twisted molecular excitons as mediators for changing the angular momentum of light,” Phys. Rev. A 96, 013819 (2017).
    [Crossref]
  214. A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos. Trans. R. Soc. A 375, 20150436 (2017).
    [Crossref]
  215. A. Zannotti, F. Diebel, M. Boguslawski, and C. Denz, “Chiral light in helically twisted photonic lattices,” Adv. Opt. Mater. 5, 1600629 (2017).
    [Crossref]
  216. R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1, 87 (2018).
    [Crossref]
  217. M. Babiker, D. L. Andrews, and V. E. Lembessis, “Atoms in complex twisted light,” J. Opt. 21, 013001 (2019).
    [Crossref]
  218. M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002).
    [Crossref]
  219. R. Mathevet, B. V. de Lesegno, L. Pruvost, and G. L. J. A. Rikken, “Negative experimental evidence for magneto-orbital dichroism,” Opt. Express 21, 3941–3945 (2013).
    [Crossref]
  220. F. Giammanco, A. Perona, P. Marsili, F. Conti, F. Fidecaro, S. Gozzini, and A. Lucchesini, “Influence of the photon orbital angular momentum on electric dipole transitions: negative experimental evidence,” Opt. Lett. 42, 219–222 (2017).
    [Crossref]
  221. C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
    [Crossref]
  222. D. L. Andrews, L. C. D. Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004).
    [Crossref]
  223. K. A. Forbes and D. L. Andrews, “Optical orbital angular momentum: twisted light and chirality,” Opt. Lett. 43, 435–438 (2018).
    [Crossref]
  224. K. A. Forbes and D. L. Andrews, “Spin-orbit interactions and chiroptical effects engaging orbital angular momentum of twisted light in chiral and achiral media,” Phys. Rev. A 99, 023837 (2019).
    [Crossref]
  225. K. A. Forbes and D. L. Andrews, “Enhanced optical activity using the orbital angular momentum of structured light,” Phys. Rev. Res. 1, 033080 (2019).
    [Crossref]
  226. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th anniversary eds. (Cambridge University, 2010).
  227. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
    [Crossref]
  228. J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–matter response in nonrelativistic quantum electrodynamics,” ACS Photon. 6, 2757–2778 (2019).
    [Crossref]

2020 (4)

R. G. Woolley, “Power-Zienau-Woolley representations of nonrelativistic QED for atoms and molecules,” Phys. Rev. Res. 2, 013206 (2020).
[Crossref]

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Quantum field representation of photon-molecule interactions,” Eur. J. Phys. 41, 025406 (2020).
[Crossref]

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Optical binding of nanoparticles,” Nanophotonics 9, 1–17 (2020).
[Crossref]

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

2019 (15)

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Off-resonance control and all-optical switching: expanded dimensions in nonlinear optics,” Appl. Sci. 9, 4252 (2019).
[Crossref]

G. A. Jones and D. S. Bradshaw, “Resonance energy transfer: from fundamental theory to recent applications,” Front. Phys. 7, 100 (2019).
[Crossref]

T. Begzjav and R. Nessler, “On three-dimensional rotational averages of odd-rank tensors,” Phys. Scr. 94, 105504 (2019).
[Crossref]

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

D. L. Andrews, “Effects of intrinsic local fields on molecular fluorescence and energy transfer: dipole mechanisms and surface potentials,” J. Phys. Chem. B 123, 5015–5023 (2019).
[Crossref]

K. A. Forbes, “Raman optical activity using twisted photons,” Phys. Rev. Lett. 122, 103201 (2019).
[Crossref]

K. A. Forbes and A. Salam, “Kramers-Heisenberg dispersion formula for scattering of twisted light,” Phys. Rev. A 100, 053413 (2019).
[Crossref]

J. S. Ford, A. Salam, and G. A. Jones, “A quantum electrodynamics description of quantum coherence and damping in condensed-phase energy transfer,” J. Phys. Chem. Lett. 10, 5654–5661 (2019).
[Crossref]

D. L. Andrews, “Chirality in fluorescence and energy transfer,” Methods Appl. Fluoresc. 7, 032001 (2019).
[Crossref]

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).
[Crossref]

T. E. Li, H.-T. Chen, and J. E. Subotnik, “Comparison of different classical, semiclassical, and quantum treatments of light-matter interactions: understanding energy conservation,” J. Chem. Theory Comput. 15, 1957–1973 (2019).
[Crossref]

M. Babiker, D. L. Andrews, and V. E. Lembessis, “Atoms in complex twisted light,” J. Opt. 21, 013001 (2019).
[Crossref]

K. A. Forbes and D. L. Andrews, “Spin-orbit interactions and chiroptical effects engaging orbital angular momentum of twisted light in chiral and achiral media,” Phys. Rev. A 99, 023837 (2019).
[Crossref]

K. A. Forbes and D. L. Andrews, “Enhanced optical activity using the orbital angular momentum of structured light,” Phys. Rev. Res. 1, 033080 (2019).
[Crossref]

J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–matter response in nonrelativistic quantum electrodynamics,” ACS Photon. 6, 2757–2778 (2019).
[Crossref]

2018 (12)

K. A. Forbes and D. L. Andrews, “Optical orbital angular momentum: twisted light and chirality,” Opt. Lett. 43, 435–438 (2018).
[Crossref]

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1, 87 (2018).
[Crossref]

J. L. Hemmerich, R. Bennett, and S. Y. Buhmann, “The influence of retardation and dielectric environments on interatomic Coulombic decay,” Nat. Commun. 9, 2934 (2018).
[Crossref]

T. E. Li, H.-T. Chen, A. Nitzan, M. Sukharev, and J. E. Subotnik, “A necessary trade-off for semiclassical electrodynamics: accurate short-range Coulomb interactions versus the enforcement of causality?” J. Phys. Chem. Lett. 9, 5955–5961 (2018).
[Crossref]

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

D. L. Andrews, “Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables,” J. Opt. 20, 033003 (2018).
[Crossref]

D. L. Andrews, “Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics,” Symmetry 10, 298 (2018).
[Crossref]

D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, “Perspective: quantum Hamiltonians for optical interactions,” J. Chem. Phys. 148, 040901 (2018).
[Crossref]

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

A. Salam, “The unified theory of resonance energy transfer according to molecular quantum electrodynamics,” Atoms 6, 56 (2018).
[Crossref]

P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Ghost imaging using optical correlations,” Laser Photon. Rev. 12, 1700143 (2018).
[Crossref]

K. A. Forbes, “Role of magnetic and diamagnetic interactions in molecular optics and scattering,” Phys. Rev. A 97, 053832 (2018).
[Crossref]

2017 (9)

K. A. Forbes, J. S. Ford, and D. L. Andrews, “Nonlocalized generation of correlated photon pairs in degenerate down-conversion,” Phys. Rev. Lett. 118, 133602 (2017).
[Crossref]

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” J. Chem. Phys. 147, 074117 (2017).
[Crossref]

X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
[Crossref]

K. A. Forbes, J. S. Ford, G. A. Jones, and D. L. Andrews, “Quantum delocalization in photon-pair generation,” Phys. Rev. A 96, 023850 (2017).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42, 3097–3100 (2017).
[Crossref]

F. Giammanco, A. Perona, P. Marsili, F. Conti, F. Fidecaro, S. Gozzini, and A. Lucchesini, “Influence of the photon orbital angular momentum on electric dipole transitions: negative experimental evidence,” Opt. Lett. 42, 219–222 (2017).
[Crossref]

X. Zang and M. T. Lusk, “Twisted molecular excitons as mediators for changing the angular momentum of light,” Phys. Rev. A 96, 013819 (2017).
[Crossref]

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos. Trans. R. Soc. A 375, 20150436 (2017).
[Crossref]

A. Zannotti, F. Diebel, M. Boguslawski, and C. Denz, “Chiral light in helically twisted photonic lattices,” Adv. Opt. Mater. 5, 1600629 (2017).
[Crossref]

2016 (6)

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
[Crossref]

S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
[Crossref]

M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Raman scattering mediated by neighboring molecules,” J. Chem. Phys. 144, 174304 (2016).
[Crossref]

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems,” Phys. Rev. B 94, 085133 (2016).
[Crossref]

R. Grinter and G. A. Jones, “Resonance energy transfer: the unified theory via vector spherical harmonics,” J. Chem. Phys. 145, 074107 (2016).
[Crossref]

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Identifying diamagnetic interactions in scattering and nonlinear optics,” Phys. Rev. A 94, 033837 (2016).
[Crossref]

2015 (11)

D. Tedesco and C. Bertucci, “Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: classic approaches and new trends,” J. Pharm. Biomed. Anal. 113, 34–42 (2015).
[Crossref]

L. D. Barron, “The development of biomolecular Raman optical activity spectroscopy,” Biomed. Spectrosc. Imag. 4, 223–253 (2015).
[Crossref]

P. I. Haris, “Laurence Barron: the founding father of Raman optical activity,” Biomed. Spectrosc. Imag. 4, 219–222 (2015).
[Crossref]

D. S. Bradshaw, K. A. Forbes, J. M. Leeder, and D. L. Andrews, “Chirality in optical trapping and optical binding,” Photonics 2, 483–497 (2015).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Electromagnetic trapping of chiral molecules: orientational effects of the irradiating beam,” J. Opt. Soc. Am. B 32, B25–B31 (2015).
[Crossref]

P. Schwerdtfeger, L. F. Pašteka, A. Punnett, and P. Bowman, “Relativistic and quantum electrodynamic effects in superheavy elements,” Nucl. Phys. A 944, 551–577 (2015).
[Crossref]

K. A. Forbes and D. L. Andrews, “Chiral discrimination in optical binding,” Phys. Rev. A 91, 053824 (2015).
[Crossref]

M. D. Williams, J. S. Ford, and D. L. Andrews, “Hyper-Rayleigh scattering in centrosymmetric systems,” J. Chem. Phys. 143, 124301 (2015).
[Crossref]

R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
[Crossref]

M. Asano and T. Takahashi, “Analytical investigation of optical vortices emitted from a collectively polarized dipole array,” Opt. Express 23, 27998–28011 (2015).
[Crossref]

T. Jahnke, “Interatomic and intermolecular Coulombic decay: the coming of age story,” J. Phys. B 48, 082001 (2015).
[Crossref]

2014 (9)

M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Direct generation of optical vortices,” Phys. Rev. A 89, 033837 (2014).
[Crossref]

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

Y. Acosta, Q. Zhang, A. Rahaman, H. Ouellet, C. Xiao, J. Sun, and C. Li, “Imaging cytosolic translocation of mycobacteria with two-photon fluorescence resonance energy transfer microscopy,” Biomed. Opt. Express 5, 3990–4001 (2014).
[Crossref]

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

D. H. Friese, M. T. P. Beerepoot, and K. Ruud, “Rotational averaging of multiphoton absorption cross sections,” J. Chem. Phys. 141, 204103 (2014).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “The role of virtual photons in nanoscale photonics,” Ann. Phys. (Berlin) 526, 173–186 (2014).
[Crossref]

Z. Yan, S. K. Gray, and N. F. Scherer, “Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters,” Nat. Commun. 5, 3751 (2014).
[Crossref]

G. Gouesbet, “Latest achievements in generalized Lorenz-Mie theories: a commented reference database,” Ann. Phys. (Berlin) 526, 461–489 (2014).
[Crossref]

J. E. Frost and G. A. Jones, “A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates,” New J. Phys. 16, 113067 (2014).
[Crossref]

2013 (10)

S. Y. Buhmann, H. Safari, S. Scheel, and A. Salam, “Body-assisted dispersion potentials of diamagnetic atoms,” Phys. Rev. A 87, 012507 (2013).
[Crossref]

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76, 026401 (2013).
[Crossref]

D. L. Andrews, “Physicality of the photon,” J. Phys. Chem. Lett. 4, 3878–3884 (2013).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Interparticle interactions: energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation,” J. Phys. Chem. A 117, 75–82 (2013).
[Crossref]

E. J. Ngen, L. Xiao, P. Rajaputra, X. Yan, and Y. You, “Enhanced singlet oxygen generation from a porphyrin–rhodamine B dyad by two-photon excitation through resonance energy transfer,” Photochem. Photobiol. 89, 841–848 (2013).
[Crossref]

M. M. Coles, M. D. Williams, and D. L. Andrews, “Second harmonic generation in isotropic media: six-wave mixing of optical vortices,” Opt. Express 21, 12783–12789 (2013).
[Crossref]

Z. Zheng, P. L. Saldanha, J. R. Rios Leite, and C. Fabre, “Two-photon-two-atom excitation by correlated light states,” Phys. Rev. A 88, 033822 (2013).
[Crossref]

M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 (2013).
[Crossref]

M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral nanoemitter array: a launchpad for optical vortices,” Laser Photon. Rev. 7, 1088–1092 (2013).
[Crossref]

R. Mathevet, B. V. de Lesegno, L. Pruvost, and G. L. J. A. Rikken, “Negative experimental evidence for magneto-orbital dichroism,” Opt. Express 21, 3941–3945 (2013).
[Crossref]

2012 (2)

E. Pedrozo-Peñafiel, R. R. Paiva, F. J. Vivanco, V. S. Bagnato, and K. M. Farias, “Two-photon cooperative absorption in colliding cold Na atoms,” Phys. Rev. Lett. 108, 253004 (2012).
[Crossref]

S. Yamamoto, J. Kaminský, and P. Bouř, “Structure and vibrational motion of insulin from Raman optical activity spectra,” Anal. Chem. 84, 2440–2451 (2012).
[Crossref]

2011 (2)

J. M. Leeder, D. S. Bradshaw, and D. L. Andrews, “Laser-controlled fluorescence in two-level systems,” J. Phys. Chem. B 115, 5227–5233 (2011).
[Crossref]

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

2010 (6)

D. L. Andrews and D. S. Bradshaw, “Off-resonant activation of optical emission,” Opt. Commun. 283, 4365–4367 (2010).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “All-optical control of molecular fluorescence,” Phys. Rev. A 81, 013424 (2010).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “All-optical switching between quantum dot nanoarrays,” Superlatt. Microstruct. 47, 308–313 (2010).
[Crossref]

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[Crossref]

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[Crossref]

M. Šindelka, “Derivation of coupled Maxwell-Schrödinger equations describing matter-laser interaction from first principles of quantum electrodynamics,” Phys. Rev. A 81, 033833 (2010).
[Crossref]

2009 (4)

D. S. Bradshaw and D. L. Andrews, “Quantum channels in nonlinear optical processes,” J. Nonlinear Opt. Phys. Mater. 18, 285–299 (2009).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “A photonic basis for deriving nonlinear optical response,” Eur. J. Phys. 30, 239–251 (2009).
[Crossref]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Mechanism for optical enhancement and suppression of fluorescence,” J. Phys. Chem. A 113, 6537–6539 (2009).
[Crossref]

2008 (7)

D. S. Bradshaw and D. L. Andrews, “Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching,” J. Chem. Phys. 128, 144506 (2008).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “The control of near-field optics: imposing direction through coupling with off-resonant laser light,” Appl. Phys. B 93, 13–20 (2008).
[Crossref]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281, 865–870 (2008).
[Crossref]

J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, “Optical binding in nanoparticle assembly: potential energy landscapes,” Phys. Rev. A 78, 043805 (2008).
[Crossref]

P. W. Milonni, R. Loudon, P. R. Berman, and S. M. Barnett, “Linear polarizabilities of two- and three-level atoms,” Phys. Rev. A 77, 043835 (2008).
[Crossref]

A. Salam, “Molecular quantum electrodynamics in the Heisenberg picture: a field theoretic viewpoint,” Int. Rev. Phys. Chem. 27, 405–448 (2008).
[Crossref]

2007 (2)

N. Tian and Q.-H. Xu, “Enhanced two-photon excitation fluorescence by fluorescence resonance energy transfer using conjugated polymers,” Adv. Mater. 19, 1988–1991 (2007).
[Crossref]

S. Kim, H. Huang, H. E. Pudavar, Y. Cui, and P. N. Prasad, “Intraparticle energy transfer and fluorescence photoconversion in nanoparticles:  an optical highlighter nanoprobe for two-photon bioimaging,” Chem. Mater. 19, 5650–5656 (2007).
[Crossref]

2006 (4)

P. R. Berman, R. W. Boyd, and P. W. Milonni, “Polarizability and the optical theorem for a two-level atom with radiative broadening,” Phys. Rev. A 74, 053816 (2006).
[Crossref]

A. Salam, “On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules,” J. Chem. Phys. 124, 014302 (2006).
[Crossref]

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, “New determination of the fine structure constant from the electron g-value and QED,” Phys. Rev. Lett. 97, 030802 (2006).
[Crossref]

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

2005 (4)

M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
[Crossref]

E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
[Crossref]

A. Salam, “Resonant transfer of excitation between two molecules using Maxwell fields,” J. Chem. Phys. 122, 044113 (2005).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Optically induced forces and torques: interactions between nanoparticles in a laser beam,” Phys. Rev. A 72, 033816 (2005).
[Crossref]

2004 (7)

L. D. Barron, L. Hecht, I. H. McColl, and E. W. Blanch, “Raman optical activity comes of age,” Mol. Phys. 102, 731–744 (2004).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach,” Eur. J. Phys. 25, 845–858 (2004).
[Crossref]

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

G. F. White, K. L. Litvinenko, S. R. Meech, D. L. Andrews, and A. J. Thomson, “Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin,” Photochem. Photobiol. Sci. 3, 47–55 (2004).
[Crossref]

A. J. Moad and G. J. Simpson, “A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies,” J. Phys. Chem. B 108, 3548–3562 (2004).
[Crossref]

P. W. Milonni and R. W. Boyd, “Influence of radiative damping on the optical-frequency susceptibility,” Phys. Rev. A 69, 023814 (2004).
[Crossref]

D. L. Andrews, L. C. D. Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004).
[Crossref]

2003 (4)

D. L. Andrews, L. C. Dávila Romero, and G. E. Stedman, “Polarizability and the resonance scattering of light: damping sign issues,” Phys. Rev. A 67, 055801 (2003).
[Crossref]

S. Allenmark, “Induced circular dichroism by chiral molecular interaction,” Chirality 15, 409–422 (2003).
[Crossref]

G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: the unified theory revisited,” J. Chem. Phys. 119, 2264–2274 (2003).
[Crossref]

L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
[Crossref]

2002 (6)

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214, 15–24 (2002).
[Crossref]

R. D. Jenkins, D. L. Andrews, and L. C. Dávila Romero, “A new diagrammatic methodology for non-relativistic quantum electrodynamics,” J. Phys. B 35, 445–468 (2002).
[Crossref]

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[Crossref]

M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002).
[Crossref]

K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd, “Conical harmonic generation in isotropic materials,” Phys. Rev. Lett. 88, 153901 (2002).
[Crossref]

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66–S72 (2002).
[Crossref]

2001 (1)

R. D. Pyatt and D. P. Shelton, “Hyper-Rayleigh scattering from CH4, CD4, CF4, and CCl4,” J. Chem. Phys. 114, 9938–9946 (2001).
[Crossref]

2000 (7)

L. C. Dávila Romero, S. Naguleswaran, G. E. Stedman, and D. L. Andrews, “Electro-optic response in isotropic media,” Nonlinear Opt. 23, 191–201 (2000).

A. M. Stewart, “Why semiclassical electrodynamics is not gauge invariant,” J. Phys. A 33, 9165–9175 (2000).
[Crossref]

R. G. Woolley, “Gauge invariance in non–relativistic electrodynamics,” Proc. R. Soc. A 456, 1803–1819 (2000).
[Crossref]

D. L. Andrews, “An accretive mechanism for blue-shifted fluorescence in strongly pumped systems: resonance energy transfer with Raman emission,” J. Raman Spectrosc. 31, 791–796 (2000).
[Crossref]

L. D. Barron, L. Hecht, E. W. Blanch, and A. F. Bell, “Solution structure and dynamics of biomolecules from Raman optical activity,” Prog. Biophys. Mol. Biol. 73, 1–49 (2000).
[Crossref]

A. Salam, “On the contribution of the diamagnetic coupling term to the two-body retarded dispersion interaction,” J. Phys. B 33, 2181–2193 (2000).
[Crossref]

J. Kohel and J. W. Keto, “Energy disposal in the two-photon laser-assisted reaction in xenon and chlorine gas mixtures,” J. Chem. Phys. 113, 10551–10559 (2000).
[Crossref]

1999 (1)

R. G. Woolley, “Charged particles, gauge invariance, and molecular electrodynamics,” Int. J. Quant. Chem. 74, 531–545 (1999).
[Crossref]

1998 (4)

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[Crossref]

D. L. Andrews, S. Naguleswaran, and G. E. Stedman, “Phenomenological damping of nonlinear-optical response tensors,” Phys. Rev. A 57, 4925–4929 (1998).
[Crossref]

P. Allcock and D. L. Andrews, “Two-photon fluorescence: resonance energy transfer,” J. Chem. Phys. 108, 3089–3095 (1998).
[Crossref]

I. D. Hands, S. Lin, S. R. Meech, and D. L. Andrews, “A quantum electrodynamical treatment of second harmonic generation through phase conjugate six-wave mixing: polarization analysis,” J. Chem. Phys. 109, 10580–10586 (1998).
[Crossref]

1997 (1)

P. Allcock and D. L. Andrews, “Six-wave mixing: secular resonances in a higher-order mechanism for second-harmonic generation,” J. Phys. B 30, 3731–3742 (1997).
[Crossref]

1996 (2)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

G. Juzeliūnas, “Microscopic theory of quantization of radiation in molecular dielectrics: normal-mode representation of operators for local and averaged (macroscopic) fields,” Phys. Rev. A 53, 3543–3558 (1996).
[Crossref]

1995 (1)

G. Juzeliūnas, “Molecular-radiation and molecule-molecule processes in condensed media: a microscopic QED theory,” Chem. Phys. 198, 145–158 (1995).
[Crossref]

1994 (2)

G. Compagno, K. Dietz, and F. Persico, “QED theory of harmonic emission by a strongly driven atom,” J. Phys. B 27, 4779–4815 (1994).
[Crossref]

D. L. Andrews, “Two-group Raman optical-activity revisited,” Faraday Discuss. 99, 375–382 (1994).
[Crossref]

1993 (2)

E. A. Power and T. Thirunamachandran, “Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states,” Phys. Rev. A 47, 2539–2551 (1993).
[Crossref]

D. L. Andrews and W. J. Meath, “On the role of permanent dipoles in second-harmonic generation,” J. Phys. B 26, 4633–4641 (1993).
[Crossref]

1990 (2)

D. L. Andrews and N. P. Blake, “Quantum electrodynamic study of bimolecular scattering effects in Raman-spectroscopy,” Phys. Rev. A 41, 2547–2565 (1990).
[Crossref]

D. L. Andrews and K. P. Hopkins, “Synergistic effects in two-photon absorption: the quantum electrodynamics of bimolecular mean-frequency absorption,” Adv. Chem. Phys. 77, 39–102 (1990).
[Crossref]

1989 (3)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref]

W. J. Meath and E. A. Power, “On the interaction of elliptically polarized light with molecules: the effects of both permanent and transition multipole moments on multiphoton absorption and chiroptical effects,” J. Mod. Opt. 36, 977–1002 (1989).
[Crossref]

D. L. Andrews, “A unified theory of radiative and radiationless molecular energy transfer,” Chem. Phys. 135, 195–201 (1989).
[Crossref]

1988 (2)

D. L. Andrews and N. P. Blake, “Forbidden nature of multipolar contributions to second-harmonic generation in isotropic fluids,” Phys. Rev. A 38, 3113–3115 (1988).
[Crossref]

L. Wiedeman, M. E. Fajardo, and V. A. Apkarian, “Electronic relaxation of xenon chloride (Xe2+Cl-) in solid and liquid xenon,” J. Phys. Chem. 92, 342–346 (1988).
[Crossref]

1986 (2)

M. E. Fajardo and V. A. Apkarian, “Cooperative photoabsorption induced charge transfer reaction dynamics in rare gas solids. I. Photodynamics of localized xenon chloride exciplexes,” J. Chem. Phys. 85, 5660–5681 (1986).
[Crossref]

M. Boivineau, J. Le Calvé, M. C. Castex, and C. Jouvet, “Formation of the XeBr* excimer by double optical excitation of the Xe–Br2 van der Waals complex,” J. Chem. Phys. 84, 4712–4713 (1986).
[Crossref]

1985 (1)

D. L. Andrews, “A simple statistical treatment of multiphoton absorption,” Am. J. Phys. 53, 1001–1002 (1985).
[Crossref]

1984 (4)

D. L. Andrews and M. J. Harlow, “Phased and Boltzmann-weighted rotational averages,” Phys. Rev. A 29, 2796–2806 (1984).
[Crossref]

W. J. Meath and E. A. Power, “On the effects of diagonal dipole matrix elements in multi-photon resonance profiles using two-level systems as models,” Mol. Phys. 51, 585–600 (1984).
[Crossref]

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B 17, 763–781 (1984).
[Crossref]

D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption. II,” J. Chem. Phys. 80, 4753–4760 (1984).
[Crossref]

1983 (2)

J. K. Ku, G. Inoue, and D. W. Setser, “Two-photon laser-assisted reaction with xenon/molecular chlorine to form excited xenon chloride (XeCl*) and with xenon/iodine chloride (ICl) to form excited xenon chloride (XeCl*) and excited xenon iodide (XeI*),” J. Phys. Chem. 87, 2989–2993 (1983).
[Crossref]

D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption,” J. Chem. Phys. 78, 1088–1094 (1983).
[Crossref]

1982 (1)

G. Wagnière, “The evaluation of three-dimensional rotational averages,” J. Chem. Phys. 76, 473–480 (1982).
[Crossref]

1981 (1)

D. L. Andrews and W. A. Ghoul, “Eighth rank isotropic tensors and rotational averages,” J. Phys. A 14, 1281–1290 (1981).
[Crossref]

1980 (4)

P. L. Knight and P. W. Milonni, “The Rabi frequency in optical spectra,” Phys. Rep. 66, 21–107 (1980).
[Crossref]

D. L. Andrews, “Harmonic generation in free molecules,” J. Phys. B 13, 4091–4099 (1980).
[Crossref]

T. Thirunamachandran, “Intermolecular interactions in the presence of an intense radiation field,” Mol. Phys. 40, 393–399 (1980).
[Crossref]

D. L. Andrews, “Rayleigh and Raman optical activity: an analysis of the dependence on scattering angle,” J. Chem. Phys. 72, 4141–4144 (1980).
[Crossref]

1979 (1)

D. L. Andrews and T. Thirunamachandran, “Hyper-Raman scattering by chiral molecules,” J. Chem. Phys. 70, 1027–1030 (1979).
[Crossref]

1977 (1)

D. L. Andrews and T. Thirunamachandran, “On three-dimensional rotational averages,” J. Chem. Phys. 67, 5026–5033 (1977).
[Crossref]

1976 (2)

P. W. Milonni, “Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory,” Phys. Rep. 25, 1–81 (1976).
[Crossref]

D. P. Craig, E. A. Power, and T. Thirunamachandran, “The dynamic terms in induced circular dichroism,” Proc. R. Soc. A 348, 19–38 (1976).
[Crossref]

1975 (1)

L. D. Barron and A. D. Buckingham, “Rayleigh and Raman optical activity,” Annu. Rev. Phys. Chem. 26, 381–396 (1975).
[Crossref]

1974 (2)

E. A. Power and T. Thirunamachandran, “Circular dichroism: a general theory based on quantum electrodynamics,” J. Chem. Phys. 60, 3695–3701 (1974).
[Crossref]

R. van den Doel and J. J. J. Kokkedee, “Comment on the radiative level shift in the neoclassical radiation theory,” Phys. Rev. A 9, 1468–1469 (1974).
[Crossref]

1971 (2)

R. G. Woolley, “Molecular quantum electrodynamics,” Proc. R. Soc. A 321, 557–572 (1971).
[Crossref]

L. D. Barron and A. D. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
[Crossref]

1970 (1)

C. R. Stroud and E. T. Jaynes, “Long-term solutions in semiclassical radiation theory,” Phys. Rev. A 1, 106–121 (1970).
[Crossref]

1969 (1)

M. D. Crisp and E. T. Jaynes, “Radiative effects in semiclassical theory,” Phys. Rev. 179, 1253–1261 (1969).
[Crossref]

1968 (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968).
[Crossref]

1966 (2)

J. S. Avery, “Resonance energy transfer and spontaneous photon emission,” Proc. Phys. Soc. London 88, 1–8 (1966).
[Crossref]

L. Gomberoff and E. A. Power, “The resonance transfer of excitation,” Proc. Phys. Soc. London 88, 281–284 (1966).
[Crossref]

1965 (2)

J. F. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37, 1–18 (1965).
[Crossref]

J. H. Shirley, “Solution of the Schrödinger equation with a Hamiltonian periodic in time,” Phys. Rev. 138, B979–B987 (1965).
[Crossref]

1963 (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

1959 (1)

E. A. Power and S. Zienau, “Coulomb gauge in non-relativistic quantum electrodynamics and the shape of spectral lines,” Philos. Trans. R. Soc. A 251, 427–454 (1959).
[Crossref]

1949 (1)

R. P. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76, 769–789 (1949).
[Crossref]

1948 (1)

H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73, 360–372 (1948).
[Crossref]

Acosta, Y.

Adamietz, F.

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

Allcock, P.

P. Allcock and D. L. Andrews, “Two-photon fluorescence: resonance energy transfer,” J. Chem. Phys. 108, 3089–3095 (1998).
[Crossref]

P. Allcock and D. L. Andrews, “Six-wave mixing: secular resonances in a higher-order mechanism for second-harmonic generation,” J. Phys. B 30, 3731–3742 (1997).
[Crossref]

D. L. Andrews and P. Allcock, Optical Harmonics in Molecular Systems (Wiley, 2002).

Allenmark, S.

S. Allenmark, “Induced circular dichroism by chiral molecular interaction,” Chirality 15, 409–422 (2003).
[Crossref]

Andrews, D. L.

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Quantum field representation of photon-molecule interactions,” Eur. J. Phys. 41, 025406 (2020).
[Crossref]

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Optical binding of nanoparticles,” Nanophotonics 9, 1–17 (2020).
[Crossref]

D. L. Andrews, “Chirality in fluorescence and energy transfer,” Methods Appl. Fluoresc. 7, 032001 (2019).
[Crossref]

D. L. Andrews, “Effects of intrinsic local fields on molecular fluorescence and energy transfer: dipole mechanisms and surface potentials,” J. Phys. Chem. B 123, 5015–5023 (2019).
[Crossref]

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Off-resonance control and all-optical switching: expanded dimensions in nonlinear optics,” Appl. Sci. 9, 4252 (2019).
[Crossref]

M. Babiker, D. L. Andrews, and V. E. Lembessis, “Atoms in complex twisted light,” J. Opt. 21, 013001 (2019).
[Crossref]

K. A. Forbes and D. L. Andrews, “Spin-orbit interactions and chiroptical effects engaging orbital angular momentum of twisted light in chiral and achiral media,” Phys. Rev. A 99, 023837 (2019).
[Crossref]

K. A. Forbes and D. L. Andrews, “Enhanced optical activity using the orbital angular momentum of structured light,” Phys. Rev. Res. 1, 033080 (2019).
[Crossref]

D. L. Andrews, “Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables,” J. Opt. 20, 033003 (2018).
[Crossref]

D. L. Andrews, “Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics,” Symmetry 10, 298 (2018).
[Crossref]

D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, “Perspective: quantum Hamiltonians for optical interactions,” J. Chem. Phys. 148, 040901 (2018).
[Crossref]

K. A. Forbes and D. L. Andrews, “Optical orbital angular momentum: twisted light and chirality,” Opt. Lett. 43, 435–438 (2018).
[Crossref]

K. A. Forbes, J. S. Ford, G. A. Jones, and D. L. Andrews, “Quantum delocalization in photon-pair generation,” Phys. Rev. A 96, 023850 (2017).
[Crossref]

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” J. Chem. Phys. 147, 074117 (2017).
[Crossref]

K. A. Forbes, J. S. Ford, and D. L. Andrews, “Nonlocalized generation of correlated photon pairs in degenerate down-conversion,” Phys. Rev. Lett. 118, 133602 (2017).
[Crossref]

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Identifying diamagnetic interactions in scattering and nonlinear optics,” Phys. Rev. A 94, 033837 (2016).
[Crossref]

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems,” Phys. Rev. B 94, 085133 (2016).
[Crossref]

M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Raman scattering mediated by neighboring molecules,” J. Chem. Phys. 144, 174304 (2016).
[Crossref]

K. A. Forbes and D. L. Andrews, “Chiral discrimination in optical binding,” Phys. Rev. A 91, 053824 (2015).
[Crossref]

M. D. Williams, J. S. Ford, and D. L. Andrews, “Hyper-Rayleigh scattering in centrosymmetric systems,” J. Chem. Phys. 143, 124301 (2015).
[Crossref]

D. S. Bradshaw, K. A. Forbes, J. M. Leeder, and D. L. Andrews, “Chirality in optical trapping and optical binding,” Photonics 2, 483–497 (2015).
[Crossref]

R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Electromagnetic trapping of chiral molecules: orientational effects of the irradiating beam,” J. Opt. Soc. Am. B 32, B25–B31 (2015).
[Crossref]

M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Direct generation of optical vortices,” Phys. Rev. A 89, 033837 (2014).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “The role of virtual photons in nanoscale photonics,” Ann. Phys. (Berlin) 526, 173–186 (2014).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Interparticle interactions: energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation,” J. Phys. Chem. A 117, 75–82 (2013).
[Crossref]

D. L. Andrews, “Physicality of the photon,” J. Phys. Chem. Lett. 4, 3878–3884 (2013).
[Crossref]

M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 (2013).
[Crossref]

M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral nanoemitter array: a launchpad for optical vortices,” Laser Photon. Rev. 7, 1088–1092 (2013).
[Crossref]

M. M. Coles, M. D. Williams, and D. L. Andrews, “Second harmonic generation in isotropic media: six-wave mixing of optical vortices,” Opt. Express 21, 12783–12789 (2013).
[Crossref]

J. M. Leeder, D. S. Bradshaw, and D. L. Andrews, “Laser-controlled fluorescence in two-level systems,” J. Phys. Chem. B 115, 5227–5233 (2011).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “All-optical switching between quantum dot nanoarrays,” Superlatt. Microstruct. 47, 308–313 (2010).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “Off-resonant activation of optical emission,” Opt. Commun. 283, 4365–4367 (2010).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “All-optical control of molecular fluorescence,” Phys. Rev. A 81, 013424 (2010).
[Crossref]

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Quantum channels in nonlinear optical processes,” J. Nonlinear Opt. Phys. Mater. 18, 285–299 (2009).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “A photonic basis for deriving nonlinear optical response,” Eur. J. Phys. 30, 239–251 (2009).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Mechanism for optical enhancement and suppression of fluorescence,” J. Phys. Chem. A 113, 6537–6539 (2009).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “The control of near-field optics: imposing direction through coupling with off-resonant laser light,” Appl. Phys. B 93, 13–20 (2008).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching,” J. Chem. Phys. 128, 144506 (2008).
[Crossref]

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281, 865–870 (2008).
[Crossref]

J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, “Optical binding in nanoparticle assembly: potential energy landscapes,” Phys. Rev. A 78, 043805 (2008).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Optically induced forces and torques: interactions between nanoparticles in a laser beam,” Phys. Rev. A 72, 033816 (2005).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach,” Eur. J. Phys. 25, 845–858 (2004).
[Crossref]

G. F. White, K. L. Litvinenko, S. R. Meech, D. L. Andrews, and A. J. Thomson, “Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin,” Photochem. Photobiol. Sci. 3, 47–55 (2004).
[Crossref]

D. L. Andrews, L. C. D. Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004).
[Crossref]

G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: the unified theory revisited,” J. Chem. Phys. 119, 2264–2274 (2003).
[Crossref]

D. L. Andrews, L. C. Dávila Romero, and G. E. Stedman, “Polarizability and the resonance scattering of light: damping sign issues,” Phys. Rev. A 67, 055801 (2003).
[Crossref]

R. D. Jenkins, D. L. Andrews, and L. C. Dávila Romero, “A new diagrammatic methodology for non-relativistic quantum electrodynamics,” J. Phys. B 35, 445–468 (2002).
[Crossref]

M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002).
[Crossref]

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66–S72 (2002).
[Crossref]

L. C. Dávila Romero, S. Naguleswaran, G. E. Stedman, and D. L. Andrews, “Electro-optic response in isotropic media,” Nonlinear Opt. 23, 191–201 (2000).

D. L. Andrews, “An accretive mechanism for blue-shifted fluorescence in strongly pumped systems: resonance energy transfer with Raman emission,” J. Raman Spectrosc. 31, 791–796 (2000).
[Crossref]

D. L. Andrews, S. Naguleswaran, and G. E. Stedman, “Phenomenological damping of nonlinear-optical response tensors,” Phys. Rev. A 57, 4925–4929 (1998).
[Crossref]

I. D. Hands, S. Lin, S. R. Meech, and D. L. Andrews, “A quantum electrodynamical treatment of second harmonic generation through phase conjugate six-wave mixing: polarization analysis,” J. Chem. Phys. 109, 10580–10586 (1998).
[Crossref]

P. Allcock and D. L. Andrews, “Two-photon fluorescence: resonance energy transfer,” J. Chem. Phys. 108, 3089–3095 (1998).
[Crossref]

P. Allcock and D. L. Andrews, “Six-wave mixing: secular resonances in a higher-order mechanism for second-harmonic generation,” J. Phys. B 30, 3731–3742 (1997).
[Crossref]

D. L. Andrews, “Two-group Raman optical-activity revisited,” Faraday Discuss. 99, 375–382 (1994).
[Crossref]

D. L. Andrews and W. J. Meath, “On the role of permanent dipoles in second-harmonic generation,” J. Phys. B 26, 4633–4641 (1993).
[Crossref]

D. L. Andrews and N. P. Blake, “Quantum electrodynamic study of bimolecular scattering effects in Raman-spectroscopy,” Phys. Rev. A 41, 2547–2565 (1990).
[Crossref]

D. L. Andrews and K. P. Hopkins, “Synergistic effects in two-photon absorption: the quantum electrodynamics of bimolecular mean-frequency absorption,” Adv. Chem. Phys. 77, 39–102 (1990).
[Crossref]

D. L. Andrews, “A unified theory of radiative and radiationless molecular energy transfer,” Chem. Phys. 135, 195–201 (1989).
[Crossref]

D. L. Andrews and N. P. Blake, “Forbidden nature of multipolar contributions to second-harmonic generation in isotropic fluids,” Phys. Rev. A 38, 3113–3115 (1988).
[Crossref]

D. L. Andrews, “A simple statistical treatment of multiphoton absorption,” Am. J. Phys. 53, 1001–1002 (1985).
[Crossref]

D. L. Andrews and M. J. Harlow, “Phased and Boltzmann-weighted rotational averages,” Phys. Rev. A 29, 2796–2806 (1984).
[Crossref]

D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption. II,” J. Chem. Phys. 80, 4753–4760 (1984).
[Crossref]

D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption,” J. Chem. Phys. 78, 1088–1094 (1983).
[Crossref]

D. L. Andrews and W. A. Ghoul, “Eighth rank isotropic tensors and rotational averages,” J. Phys. A 14, 1281–1290 (1981).
[Crossref]

D. L. Andrews, “Harmonic generation in free molecules,” J. Phys. B 13, 4091–4099 (1980).
[Crossref]

D. L. Andrews, “Rayleigh and Raman optical activity: an analysis of the dependence on scattering angle,” J. Chem. Phys. 72, 4141–4144 (1980).
[Crossref]

D. L. Andrews and T. Thirunamachandran, “Hyper-Raman scattering by chiral molecules,” J. Chem. Phys. 70, 1027–1030 (1979).
[Crossref]

D. L. Andrews and T. Thirunamachandran, “On three-dimensional rotational averages,” J. Chem. Phys. 67, 5026–5033 (1977).
[Crossref]

D. L. Andrews and D. S. Bradshaw, Optical Nanomanipulation (Morgan & Claypool, 2016).

D. L. Andrews and P. Allcock, Optical Harmonics in Molecular Systems (Wiley, 2002).

D. L. Andrews and D. S. Bradshaw, Introduction to Photon Science and Technology (SPIE, 2018).

D. L. Andrews and A. A. Demidov, Resonance Energy Transfer (Wiley, 1999).

D. L. Andrews and D. S. Bradshaw, “Resonance energy transfer,” in Encyclopedia of Applied Specteoscopy, D. L. Andrews, eds. (Wiley, 2009), pp. 533–554.

Apkarian, V. A.

L. Wiedeman, M. E. Fajardo, and V. A. Apkarian, “Electronic relaxation of xenon chloride (Xe2+Cl-) in solid and liquid xenon,” J. Phys. Chem. 92, 342–346 (1988).
[Crossref]

M. E. Fajardo and V. A. Apkarian, “Cooperative photoabsorption induced charge transfer reaction dynamics in rare gas solids. I. Photodynamics of localized xenon chloride exciplexes,” J. Chem. Phys. 85, 5660–5681 (1986).
[Crossref]

Appel, H.

J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–matter response in nonrelativistic quantum electrodynamics,” ACS Photon. 6, 2757–2778 (2019).
[Crossref]

Arimondo, E.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214, 15–24 (2002).
[Crossref]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Asano, M.

Aspect, A.

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge University, 2010).

Asselberghs, I.

E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
[Crossref]

Avery, J. S.

J. S. Avery, “Resonance energy transfer and spontaneous photon emission,” Proc. Phys. Soc. London 88, 1–8 (1966).
[Crossref]

Babiker, M.

M. Babiker, D. L. Andrews, and V. E. Lembessis, “Atoms in complex twisted light,” J. Opt. 21, 013001 (2019).
[Crossref]

D. L. Andrews, L. C. D. Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004).
[Crossref]

M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002).
[Crossref]

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66–S72 (2002).
[Crossref]

Bagnato, V. S.

E. Pedrozo-Peñafiel, R. R. Paiva, F. J. Vivanco, V. S. Bagnato, and K. M. Farias, “Two-photon cooperative absorption in colliding cold Na atoms,” Phys. Rev. Lett. 108, 253004 (2012).
[Crossref]

Barnett, S. M.

P. W. Milonni, R. Loudon, P. R. Berman, and S. M. Barnett, “Linear polarizabilities of two- and three-level atoms,” Phys. Rev. A 77, 043835 (2008).
[Crossref]

Barron, L. D.

L. D. Barron, “The development of biomolecular Raman optical activity spectroscopy,” Biomed. Spectrosc. Imag. 4, 223–253 (2015).
[Crossref]

L. D. Barron, L. Hecht, I. H. McColl, and E. W. Blanch, “Raman optical activity comes of age,” Mol. Phys. 102, 731–744 (2004).
[Crossref]

L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
[Crossref]

L. D. Barron, L. Hecht, E. W. Blanch, and A. F. Bell, “Solution structure and dynamics of biomolecules from Raman optical activity,” Prog. Biophys. Mol. Biol. 73, 1–49 (2000).
[Crossref]

L. D. Barron and A. D. Buckingham, “Rayleigh and Raman optical activity,” Annu. Rev. Phys. Chem. 26, 381–396 (1975).
[Crossref]

L. D. Barron and A. D. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
[Crossref]

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2009).

Becker, T.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Beerepoot, M. T. P.

D. H. Friese, M. T. P. Beerepoot, and K. Ruud, “Rotational averaging of multiphoton absorption cross sections,” J. Chem. Phys. 141, 204103 (2014).
[Crossref]

Begzjav, T.

T. Begzjav and R. Nessler, “On three-dimensional rotational averages of odd-rank tensors,” Phys. Scr. 94, 105504 (2019).
[Crossref]

Bell, A. F.

L. D. Barron, L. Hecht, E. W. Blanch, and A. F. Bell, “Solution structure and dynamics of biomolecules from Raman optical activity,” Prog. Biophys. Mol. Biol. 73, 1–49 (2000).
[Crossref]

Bennett, C. R.

M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002).
[Crossref]

Bennett, R.

J. L. Hemmerich, R. Bennett, and S. Y. Buhmann, “The influence of retardation and dielectric environments on interatomic Coulombic decay,” Nat. Commun. 9, 2934 (2018).
[Crossref]

Berman, P. R.

P. W. Milonni, R. Loudon, P. R. Berman, and S. M. Barnett, “Linear polarizabilities of two- and three-level atoms,” Phys. Rev. A 77, 043835 (2008).
[Crossref]

P. R. Berman, R. W. Boyd, and P. W. Milonni, “Polarizability and the optical theorem for a two-level atom with radiative broadening,” Phys. Rev. A 74, 053816 (2006).
[Crossref]

P. R. Berman, Introductory Quantum Mechanics (Springer, 2018), p. 557.

Bertucci, C.

D. Tedesco and C. Bertucci, “Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: classic approaches and new trends,” J. Pharm. Biomed. Anal. 113, 34–42 (2015).
[Crossref]

Bian, Y.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Blake, N. P.

D. L. Andrews and N. P. Blake, “Quantum electrodynamic study of bimolecular scattering effects in Raman-spectroscopy,” Phys. Rev. A 41, 2547–2565 (1990).
[Crossref]

D. L. Andrews and N. P. Blake, “Forbidden nature of multipolar contributions to second-harmonic generation in isotropic fluids,” Phys. Rev. A 38, 3113–3115 (1988).
[Crossref]

Blanch, E. W.

L. D. Barron, L. Hecht, I. H. McColl, and E. W. Blanch, “Raman optical activity comes of age,” Mol. Phys. 102, 731–744 (2004).
[Crossref]

L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
[Crossref]

L. D. Barron, L. Hecht, E. W. Blanch, and A. F. Bell, “Solution structure and dynamics of biomolecules from Raman optical activity,” Prog. Biophys. Mol. Biol. 73, 1–49 (2000).
[Crossref]

Bloembergen, N.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968).
[Crossref]

N. Bloembergen, Nonlinear Optics, 4th ed. (World Scientific, 1996).

Boguslawski, M.

A. Zannotti, F. Diebel, M. Boguslawski, and C. Denz, “Chiral light in helically twisted photonic lattices,” Adv. Opt. Mater. 5, 1600629 (2017).
[Crossref]

Boivineau, M.

M. Boivineau, J. Le Calvé, M. C. Castex, and C. Jouvet, “Formation of the XeBr* excimer by double optical excitation of the Xe–Br2 van der Waals complex,” J. Chem. Phys. 84, 4712–4713 (1986).
[Crossref]

Botek, E.

E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
[Crossref]

Bour, P.

S. Yamamoto, J. Kaminský, and P. Bouř, “Structure and vibrational motion of insulin from Raman optical activity spectra,” Anal. Chem. 84, 2440–2451 (2012).
[Crossref]

Bowman, P.

P. Schwerdtfeger, L. F. Pašteka, A. Punnett, and P. Bowman, “Relativistic and quantum electrodynamic effects in superheavy elements,” Nucl. Phys. A 944, 551–577 (2015).
[Crossref]

Bowman, R. W.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76, 026401 (2013).
[Crossref]

Boyd, R. W.

P. R. Berman, R. W. Boyd, and P. W. Milonni, “Polarizability and the optical theorem for a two-level atom with radiative broadening,” Phys. Rev. A 74, 053816 (2006).
[Crossref]

P. W. Milonni and R. W. Boyd, “Influence of radiative damping on the optical-frequency susceptibility,” Phys. Rev. A 69, 023814 (2004).
[Crossref]

K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd, “Conical harmonic generation in isotropic materials,” Phys. Rev. Lett. 88, 153901 (2002).
[Crossref]

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Bradshaw, D. S.

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Quantum field representation of photon-molecule interactions,” Eur. J. Phys. 41, 025406 (2020).
[Crossref]

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Optical binding of nanoparticles,” Nanophotonics 9, 1–17 (2020).
[Crossref]

G. A. Jones and D. S. Bradshaw, “Resonance energy transfer: from fundamental theory to recent applications,” Front. Phys. 7, 100 (2019).
[Crossref]

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Off-resonance control and all-optical switching: expanded dimensions in nonlinear optics,” Appl. Sci. 9, 4252 (2019).
[Crossref]

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Identifying diamagnetic interactions in scattering and nonlinear optics,” Phys. Rev. A 94, 033837 (2016).
[Crossref]

M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Raman scattering mediated by neighboring molecules,” J. Chem. Phys. 144, 174304 (2016).
[Crossref]

D. S. Bradshaw, K. A. Forbes, J. M. Leeder, and D. L. Andrews, “Chirality in optical trapping and optical binding,” Photonics 2, 483–497 (2015).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Electromagnetic trapping of chiral molecules: orientational effects of the irradiating beam,” J. Opt. Soc. Am. B 32, B25–B31 (2015).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “The role of virtual photons in nanoscale photonics,” Ann. Phys. (Berlin) 526, 173–186 (2014).
[Crossref]

M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Direct generation of optical vortices,” Phys. Rev. A 89, 033837 (2014).
[Crossref]

M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral nanoemitter array: a launchpad for optical vortices,” Laser Photon. Rev. 7, 1088–1092 (2013).
[Crossref]

M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 (2013).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Interparticle interactions: energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation,” J. Phys. Chem. A 117, 75–82 (2013).
[Crossref]

J. M. Leeder, D. S. Bradshaw, and D. L. Andrews, “Laser-controlled fluorescence in two-level systems,” J. Phys. Chem. B 115, 5227–5233 (2011).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “All-optical switching between quantum dot nanoarrays,” Superlatt. Microstruct. 47, 308–313 (2010).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “Off-resonant activation of optical emission,” Opt. Commun. 283, 4365–4367 (2010).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “All-optical control of molecular fluorescence,” Phys. Rev. A 81, 013424 (2010).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Mechanism for optical enhancement and suppression of fluorescence,” J. Phys. Chem. A 113, 6537–6539 (2009).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Quantum channels in nonlinear optical processes,” J. Nonlinear Opt. Phys. Mater. 18, 285–299 (2009).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “A photonic basis for deriving nonlinear optical response,” Eur. J. Phys. 30, 239–251 (2009).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching,” J. Chem. Phys. 128, 144506 (2008).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “The control of near-field optics: imposing direction through coupling with off-resonant laser light,” Appl. Phys. B 93, 13–20 (2008).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Optically induced forces and torques: interactions between nanoparticles in a laser beam,” Phys. Rev. A 72, 033816 (2005).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach,” Eur. J. Phys. 25, 845–858 (2004).
[Crossref]

G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: the unified theory revisited,” J. Chem. Phys. 119, 2264–2274 (2003).
[Crossref]

D. L. Andrews and D. S. Bradshaw, Optical Nanomanipulation (Morgan & Claypool, 2016).

D. L. Andrews and D. S. Bradshaw, Introduction to Photon Science and Technology (SPIE, 2018).

D. L. Andrews and D. S. Bradshaw, “Resonance energy transfer,” in Encyclopedia of Applied Specteoscopy, D. L. Andrews, eds. (Wiley, 2009), pp. 533–554.

Buckingham, A. D.

L. D. Barron and A. D. Buckingham, “Rayleigh and Raman optical activity,” Annu. Rev. Phys. Chem. 26, 381–396 (1975).
[Crossref]

L. D. Barron and A. D. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
[Crossref]

Buhmann, S. Y.

J. L. Hemmerich, R. Bennett, and S. Y. Buhmann, “The influence of retardation and dielectric environments on interatomic Coulombic decay,” Nat. Commun. 9, 2934 (2018).
[Crossref]

S. Y. Buhmann, H. Safari, S. Scheel, and A. Salam, “Body-assisted dispersion potentials of diamagnetic atoms,” Phys. Rev. A 87, 012507 (2013).
[Crossref]

Burns, M. M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref]

Butcher, P. N.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Carbery, D. R.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Casimir, H. B. G.

H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73, 360–372 (1948).
[Crossref]

Castex, M. C.

M. Boivineau, J. Le Calvé, M. C. Castex, and C. Jouvet, “Formation of the XeBr* excimer by double optical excitation of the Xe–Br2 van der Waals complex,” J. Chem. Phys. 84, 4712–4713 (1986).
[Crossref]

Champagne, B.

E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
[Crossref]

Chang, R. K.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968).
[Crossref]

Chen, C.-T.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

Chen, H.-T.

T. E. Li, H.-T. Chen, and J. E. Subotnik, “Comparison of different classical, semiclassical, and quantum treatments of light-matter interactions: understanding energy conservation,” J. Chem. Theory Comput. 15, 1957–1973 (2019).
[Crossref]

T. E. Li, H.-T. Chen, A. Nitzan, M. Sukharev, and J. E. Subotnik, “A necessary trade-off for semiclassical electrodynamics: accurate short-range Coulomb interactions versus the enforcement of causality?” J. Phys. Chem. Lett. 9, 5955–5961 (2018).
[Crossref]

Chen, J. J.

X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
[Crossref]

Chen, N.-T.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Chen, R.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Chen, S. Y. S.

B. W. van der Meer, G. Coker, and S. Y. S. Chen, Resonance Energy Transfer: Theory and Data (VCH, 1994).

Cheng, S.-H.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Choi, M. Y.

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

Chou, P.-T.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Chu, C.-H.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th anniversary eds. (Cambridge University, 2010).

Chung, M.-F.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

Cižmár, T.

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[Crossref]

Clays, K.

E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
[Crossref]

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[Crossref]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1992), p. 59.

Coker, G.

B. W. van der Meer, G. Coker, and S. Y. S. Chen, Resonance Energy Transfer: Theory and Data (VCH, 1994).

Coles, M. M.

M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Direct generation of optical vortices,” Phys. Rev. A 89, 033837 (2014).
[Crossref]

M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral nanoemitter array: a launchpad for optical vortices,” Laser Photon. Rev. 7, 1088–1092 (2013).
[Crossref]

M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 (2013).
[Crossref]

M. M. Coles, M. D. Williams, and D. L. Andrews, “Second harmonic generation in isotropic media: six-wave mixing of optical vortices,” Opt. Express 21, 12783–12789 (2013).
[Crossref]

Collins, J. T.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Compagno, G.

G. Compagno, K. Dietz, and F. Persico, “QED theory of harmonic emission by a strongly driven atom,” J. Phys. B 27, 4779–4815 (1994).
[Crossref]

Conti, F.

Cotter, D.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

Craig, D. P.

D. P. Craig, E. A. Power, and T. Thirunamachandran, “The dynamic terms in induced circular dichroism,” Proc. R. Soc. A 348, 19–38 (1976).
[Crossref]

D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (Dover, 1998).

Crisp, M. D.

M. D. Crisp and E. T. Jaynes, “Radiative effects in semiclassical theory,” Phys. Rev. 179, 1253–1261 (1969).
[Crossref]

Cui, Y.

S. Kim, H. Huang, H. E. Pudavar, Y. Cui, and P. N. Prasad, “Intraparticle energy transfer and fluorescence photoconversion in nanoparticles:  an optical highlighter nanoprobe for two-photon bioimaging,” Chem. Mater. 19, 5650–5656 (2007).
[Crossref]

Cummings, F. W.

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Daniels, G. J.

G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: the unified theory revisited,” J. Chem. Phys. 119, 2264–2274 (2003).
[Crossref]

Dávila Romero, L. C.

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[Crossref]

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281, 865–870 (2008).
[Crossref]

J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, “Optical binding in nanoparticle assembly: potential energy landscapes,” Phys. Rev. A 78, 043805 (2008).
[Crossref]

D. L. Andrews, L. C. Dávila Romero, and G. E. Stedman, “Polarizability and the resonance scattering of light: damping sign issues,” Phys. Rev. A 67, 055801 (2003).
[Crossref]

R. D. Jenkins, D. L. Andrews, and L. C. Dávila Romero, “A new diagrammatic methodology for non-relativistic quantum electrodynamics,” J. Phys. B 35, 445–468 (2002).
[Crossref]

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66–S72 (2002).
[Crossref]

M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002).
[Crossref]

L. C. Dávila Romero, S. Naguleswaran, G. E. Stedman, and D. L. Andrews, “Electro-optic response in isotropic media,” Nonlinear Opt. 23, 191–201 (2000).

de Lesegno, B. V.

De Liberato, S.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).
[Crossref]

Demidov, A. A.

D. L. Andrews and A. A. Demidov, Resonance Energy Transfer (Wiley, 1999).

Denz, C.

A. Zannotti, F. Diebel, M. Boguslawski, and C. Denz, “Chiral light in helically twisted photonic lattices,” Adv. Opt. Mater. 5, 1600629 (2017).
[Crossref]

Dholakia, K.

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[Crossref]

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[Crossref]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

Dichtel, W. R.

M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
[Crossref]

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

Diebel, F.

A. Zannotti, F. Diebel, M. Boguslawski, and C. Denz, “Chiral light in helically twisted photonic lattices,” Adv. Opt. Mater. 5, 1600629 (2017).
[Crossref]

Dietz, K.

G. Compagno, K. Dietz, and F. Persico, “QED theory of harmonic emission by a strongly driven atom,” J. Phys. B 27, 4779–4815 (1994).
[Crossref]

Drozdek, S.

S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
[Crossref]

Du, H.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Dupont-Roc, J.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1992), p. 59.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).

Edder, C.

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

Englert, B.-G.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Eyring, H.

H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, 1944).

Fabre, C.

Z. Zheng, P. L. Saldanha, J. R. Rios Leite, and C. Fabre, “Two-photon-two-atom excitation by correlated light states,” Phys. Rev. A 88, 033822 (2013).
[Crossref]

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge University, 2010).

Fajardo, M. E.

L. Wiedeman, M. E. Fajardo, and V. A. Apkarian, “Electronic relaxation of xenon chloride (Xe2+Cl-) in solid and liquid xenon,” J. Phys. Chem. 92, 342–346 (1988).
[Crossref]

M. E. Fajardo and V. A. Apkarian, “Cooperative photoabsorption induced charge transfer reaction dynamics in rare gas solids. I. Photodynamics of localized xenon chloride exciplexes,” J. Chem. Phys. 85, 5660–5681 (1986).
[Crossref]

Farias, K. M.

E. Pedrozo-Peñafiel, R. R. Paiva, F. J. Vivanco, V. S. Bagnato, and K. M. Farias, “Two-photon cooperative absorption in colliding cold Na atoms,” Phys. Rev. Lett. 108, 253004 (2012).
[Crossref]

Fermi, E.

E. Fermi, Nuclear Physics (University of Chicago, 1950).

Ferrand, Y.

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

Feynman, R. P.

R. P. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76, 769–789 (1949).
[Crossref]

Fidecaro, F.

Fischer, P.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Fitzgerald, J. M.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1, 87 (2018).
[Crossref]

Flick, J.

J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–matter response in nonrelativistic quantum electrodynamics,” ACS Photon. 6, 2757–2778 (2019).
[Crossref]

Forbes, A.

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos. Trans. R. Soc. A 375, 20150436 (2017).
[Crossref]

Forbes, K. A.

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Optical binding of nanoparticles,” Nanophotonics 9, 1–17 (2020).
[Crossref]

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Quantum field representation of photon-molecule interactions,” Eur. J. Phys. 41, 025406 (2020).
[Crossref]

K. A. Forbes, “Raman optical activity using twisted photons,” Phys. Rev. Lett. 122, 103201 (2019).
[Crossref]

K. A. Forbes and A. Salam, “Kramers-Heisenberg dispersion formula for scattering of twisted light,” Phys. Rev. A 100, 053413 (2019).
[Crossref]

K. A. Forbes and D. L. Andrews, “Enhanced optical activity using the orbital angular momentum of structured light,” Phys. Rev. Res. 1, 033080 (2019).
[Crossref]

K. A. Forbes and D. L. Andrews, “Spin-orbit interactions and chiroptical effects engaging orbital angular momentum of twisted light in chiral and achiral media,” Phys. Rev. A 99, 023837 (2019).
[Crossref]

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Off-resonance control and all-optical switching: expanded dimensions in nonlinear optics,” Appl. Sci. 9, 4252 (2019).
[Crossref]

K. A. Forbes, “Role of magnetic and diamagnetic interactions in molecular optics and scattering,” Phys. Rev. A 97, 053832 (2018).
[Crossref]

K. A. Forbes and D. L. Andrews, “Optical orbital angular momentum: twisted light and chirality,” Opt. Lett. 43, 435–438 (2018).
[Crossref]

K. A. Forbes, J. S. Ford, and D. L. Andrews, “Nonlocalized generation of correlated photon pairs in degenerate down-conversion,” Phys. Rev. Lett. 118, 133602 (2017).
[Crossref]

K. A. Forbes, J. S. Ford, G. A. Jones, and D. L. Andrews, “Quantum delocalization in photon-pair generation,” Phys. Rev. A 96, 023850 (2017).
[Crossref]

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Identifying diamagnetic interactions in scattering and nonlinear optics,” Phys. Rev. A 94, 033837 (2016).
[Crossref]

D. S. Bradshaw, K. A. Forbes, J. M. Leeder, and D. L. Andrews, “Chirality in optical trapping and optical binding,” Photonics 2, 483–497 (2015).
[Crossref]

K. A. Forbes and D. L. Andrews, “Chiral discrimination in optical binding,” Phys. Rev. A 91, 053824 (2015).
[Crossref]

Ford, J. S.

J. S. Ford, A. Salam, and G. A. Jones, “A quantum electrodynamics description of quantum coherence and damping in condensed-phase energy transfer,” J. Phys. Chem. Lett. 10, 5654–5661 (2019).
[Crossref]

K. A. Forbes, J. S. Ford, G. A. Jones, and D. L. Andrews, “Quantum delocalization in photon-pair generation,” Phys. Rev. A 96, 023850 (2017).
[Crossref]

K. A. Forbes, J. S. Ford, and D. L. Andrews, “Nonlocalized generation of correlated photon pairs in degenerate down-conversion,” Phys. Rev. Lett. 118, 133602 (2017).
[Crossref]

M. D. Williams, J. S. Ford, and D. L. Andrews, “Hyper-Rayleigh scattering in centrosymmetric systems,” J. Chem. Phys. 143, 124301 (2015).
[Crossref]

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref]

Fréchet, J. M. J.

M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
[Crossref]

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

Friese, D. H.

D. H. Friese, M. T. P. Beerepoot, and K. Ruud, “Rotational averaging of multiphoton absorption cross sections,” J. Chem. Phys. 141, 204103 (2014).
[Crossref]

Frost, J. E.

J. E. Frost and G. A. Jones, “A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates,” New J. Phys. 16, 113067 (2014).
[Crossref]

Gabrielse, G.

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, “New determination of the fine structure constant from the electron g-value and QED,” Phys. Rev. Lett. 97, 030802 (2006).
[Crossref]

Gaeta, A. L.

K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd, “Conical harmonic generation in isotropic materials,” Phys. Rev. Lett. 88, 153901 (2002).
[Crossref]

Gao, Y.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Ghoul, W. A.

D. L. Andrews and W. A. Ghoul, “Eighth rank isotropic tensors and rotational averages,” J. Phys. A 14, 1281–1290 (1981).
[Crossref]

Giammanco, F.

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref]

Gomberoff, L.

L. Gomberoff and E. A. Power, “The resonance transfer of excitation,” Proc. Phys. Soc. London 88, 281–284 (1966).
[Crossref]

Gong, L.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Gouesbet, G.

G. Gouesbet, “Latest achievements in generalized Lorenz-Mie theories: a commented reference database,” Ann. Phys. (Berlin) 526, 461–489 (2014).
[Crossref]

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).
[Crossref]

Gozzini, S.

Gray, S. K.

Z. Yan, S. K. Gray, and N. F. Scherer, “Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters,” Nat. Commun. 5, 3751 (2014).
[Crossref]

Gregory, T.

P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Ghost imaging using optical correlations,” Laser Photon. Rev. 12, 1700143 (2018).
[Crossref]

Grimsdale, A. C.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Grinter, R.

R. Grinter and G. A. Jones, “Resonance energy transfer: the unified theory via vector spherical harmonics,” J. Chem. Phys. 145, 074107 (2016).
[Crossref]

Grynberg, G.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge University, 2010).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1992), p. 59.

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

Guérin, S.

S. Guérin and H. R. Jauslin, “Control of quantum dynamics by laser pulses: adiabatic Floquet theory,” in Advances in Chemical Physics (Wiley, 2003), Vol. 125, pp. 147–268.

Gunapala, S. D.

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” J. Chem. Phys. 147, 074117 (2017).
[Crossref]

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems,” Phys. Rev. B 94, 085133 (2016).
[Crossref]

Hands, I. D.

I. D. Hands, S. Lin, S. R. Meech, and D. L. Andrews, “A quantum electrodynamical treatment of second harmonic generation through phase conjugate six-wave mixing: polarization analysis,” J. Chem. Phys. 109, 10580–10586 (1998).
[Crossref]

Hanneke, D.

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, “New determination of the fine structure constant from the electron g-value and QED,” Phys. Rev. Lett. 97, 030802 (2006).
[Crossref]

Hao, E. C.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[Crossref]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Haris, P. I.

P. I. Haris, “Laurence Barron: the founding father of Raman optical activity,” Biomed. Spectrosc. Imag. 4, 219–222 (2015).
[Crossref]

Harlow, M. J.

D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption. II,” J. Chem. Phys. 80, 4753–4760 (1984).
[Crossref]

D. L. Andrews and M. J. Harlow, “Phased and Boltzmann-weighted rotational averages,” Phys. Rev. A 29, 2796–2806 (1984).
[Crossref]

D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption,” J. Chem. Phys. 78, 1088–1094 (1983).
[Crossref]

He, G. S.

G. S. He, Nonlinear Optics and Photonics (Oxford University, 2014).

He, T.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Hecht, L.

L. D. Barron, L. Hecht, I. H. McColl, and E. W. Blanch, “Raman optical activity comes of age,” Mol. Phys. 102, 731–744 (2004).
[Crossref]

L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
[Crossref]

L. D. Barron, L. Hecht, E. W. Blanch, and A. F. Bell, “Solution structure and dynamics of biomolecules from Raman optical activity,” Prog. Biophys. Mol. Biol. 73, 1–49 (2000).
[Crossref]

Heitler, W.

W. Heitler, The Quantum Theory of Radiation (Dover, 1984).

Hemmerich, J. L.

J. L. Hemmerich, R. Bennett, and S. Y. Buhmann, “The influence of retardation and dielectric environments on interatomic Coulombic decay,” Nat. Commun. 9, 2934 (2018).
[Crossref]

Hendrickx, E.

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[Crossref]

Heo, J.

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

Hess, O.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1, 87 (2018).
[Crossref]

Homoelle, D.

K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd, “Conical harmonic generation in isotropic materials,” Phys. Rev. Lett. 88, 153901 (2002).
[Crossref]

Hong, A.

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

Hooper, D. C.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Hopkins, K. P.

D. L. Andrews and K. P. Hopkins, “Synergistic effects in two-photon absorption: the quantum electrodynamics of bimolecular mean-frequency absorption,” Adv. Chem. Phys. 77, 39–102 (1990).
[Crossref]

Hsieh, C.-C.

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Hu, S. M.

X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
[Crossref]

Huang, C.-M.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Huang, H.

S. Kim, H. Huang, H. E. Pudavar, Y. Cui, and P. N. Prasad, “Intraparticle energy transfer and fluorescence photoconversion in nanoparticles:  an optical highlighter nanoprobe for two-photon bioimaging,” Chem. Mater. 19, 5650–5656 (2007).
[Crossref]

Hupp, J. T.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[Crossref]

Inoue, G.

J. K. Ku, G. Inoue, and D. W. Setser, “Two-photon laser-assisted reaction with xenon/molecular chlorine to form excited xenon chloride (XeCl*) and with xenon/iodine chloride (ICl) to form excited xenon chloride (XeCl*) and excited xenon iodide (XeI*),” J. Phys. Chem. 87, 2989–2993 (1983).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Jahnke, T.

T. Jahnke, “Interatomic and intermolecular Coulombic decay: the coming of age story,” J. Phys. B 48, 082001 (2015).
[Crossref]

Jang, H.

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

Jauslin, H. R.

S. Guérin and H. R. Jauslin, “Control of quantum dynamics by laser pulses: adiabatic Floquet theory,” in Advances in Chemical Physics (Wiley, 2003), Vol. 125, pp. 147–268.

Jaynes, E. T.

C. R. Stroud and E. T. Jaynes, “Long-term solutions in semiclassical radiation theory,” Phys. Rev. A 1, 106–121 (1970).
[Crossref]

M. D. Crisp and E. T. Jaynes, “Radiative effects in semiclassical theory,” Phys. Rev. 179, 1253–1261 (1969).
[Crossref]

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Jenkins, R. D.

G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: the unified theory revisited,” J. Chem. Phys. 119, 2264–2274 (2003).
[Crossref]

R. D. Jenkins, D. L. Andrews, and L. C. Dávila Romero, “A new diagrammatic methodology for non-relativistic quantum electrodynamics,” J. Phys. B 35, 445–468 (2002).
[Crossref]

Jeong, H. H.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Jha, S. S.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968).
[Crossref]

Jiang, J.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Jiang, W.

X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
[Crossref]

Johnson, R. C.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[Crossref]

Jones, G. A.

J. S. Ford, A. Salam, and G. A. Jones, “A quantum electrodynamics description of quantum coherence and damping in condensed-phase energy transfer,” J. Phys. Chem. Lett. 10, 5654–5661 (2019).
[Crossref]

G. A. Jones and D. S. Bradshaw, “Resonance energy transfer: from fundamental theory to recent applications,” Front. Phys. 7, 100 (2019).
[Crossref]

D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, “Perspective: quantum Hamiltonians for optical interactions,” J. Chem. Phys. 148, 040901 (2018).
[Crossref]

K. A. Forbes, J. S. Ford, G. A. Jones, and D. L. Andrews, “Quantum delocalization in photon-pair generation,” Phys. Rev. A 96, 023850 (2017).
[Crossref]

R. Grinter and G. A. Jones, “Resonance energy transfer: the unified theory via vector spherical harmonics,” J. Chem. Phys. 145, 074107 (2016).
[Crossref]

J. E. Frost and G. A. Jones, “A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates,” New J. Phys. 16, 113067 (2014).
[Crossref]

Jouvet, C.

M. Boivineau, J. Le Calvé, M. C. Castex, and C. Jouvet, “Formation of the XeBr* excimer by double optical excitation of the Xe–Br2 van der Waals complex,” J. Chem. Phys. 84, 4712–4713 (1986).
[Crossref]

Juzeliunas, G.

G. Juzeliūnas, “Microscopic theory of quantization of radiation in molecular dielectrics: normal-mode representation of operators for local and averaged (macroscopic) fields,” Phys. Rev. A 53, 3543–3558 (1996).
[Crossref]

G. Juzeliūnas, “Molecular-radiation and molecule-molecule processes in condensed media: a microscopic QED theory,” Chem. Phys. 198, 145–158 (1995).
[Crossref]

Kaminský, J.

S. Yamamoto, J. Kaminský, and P. Bouř, “Structure and vibrational motion of insulin from Raman optical activity spectra,” Anal. Chem. 84, 2440–2451 (2012).
[Crossref]

Kauffmann, B.

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

Kaufmann, H.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
[Crossref]

Kerber, R. M.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1, 87 (2018).
[Crossref]

Keto, J. W.

J. Kohel and J. W. Keto, “Energy disposal in the two-photon laser-assisted reaction in xenon and chlorine gas mixtures,” J. Chem. Phys. 113, 10551–10559 (2000).
[Crossref]

Kim, N. J.

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

Kim, S.

S. Kim, H. Huang, H. E. Pudavar, Y. Cui, and P. N. Prasad, “Intraparticle energy transfer and fluorescence photoconversion in nanoparticles:  an optical highlighter nanoprobe for two-photon bioimaging,” Chem. Mater. 19, 5650–5656 (2007).
[Crossref]

Kimball, G. E.

H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, 1944).

Kinoshita, T.

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, “New determination of the fine structure constant from the electron g-value and QED,” Phys. Rev. Lett. 97, 030802 (2006).
[Crossref]

Knight, P. L.

P. L. Knight and P. W. Milonni, “The Rabi frequency in optical spectra,” Phys. Rep. 66, 21–107 (1980).
[Crossref]

Kockum, A. F.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).
[Crossref]

Kohel, J.

J. Kohel and J. W. Keto, “Energy disposal in the two-photon laser-assisted reaction in xenon and chlorine gas mixtures,” J. Chem. Phys. 113, 10551–10559 (2000).
[Crossref]

Kokkedee, J. J. J.

R. van den Doel and J. J. J. Kokkedee, “Comment on the radiative level shift in the neoclassical radiation theory,” Phys. Rev. A 9, 1468–1469 (1974).
[Crossref]

Ku, J. K.

J. K. Ku, G. Inoue, and D. W. Setser, “Two-photon laser-assisted reaction with xenon/molecular chlorine to form excited xenon chloride (XeCl*) and with xenon/iodine chloride (ICl) to form excited xenon chloride (XeCl*) and excited xenon iodide (XeI*),” J. Phys. Chem. 87, 2989–2993 (1983).
[Crossref]

Kühn, O.

V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley, 2008).

Lamb, W. E.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (CRC Press, 1978).

Lamch, L.

S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
[Crossref]

Le Calvé, J.

M. Boivineau, J. Le Calvé, M. C. Castex, and C. Jouvet, “Formation of the XeBr* excimer by double optical excitation of the Xe–Br2 van der Waals complex,” J. Chem. Phys. 84, 4712–4713 (1986).
[Crossref]

Lee, C. H.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968).
[Crossref]

Leeder, J. M.

D. S. Bradshaw, K. A. Forbes, J. M. Leeder, and D. L. Andrews, “Chirality in optical trapping and optical binding,” Photonics 2, 483–497 (2015).
[Crossref]

J. M. Leeder, D. S. Bradshaw, and D. L. Andrews, “Laser-controlled fluorescence in two-level systems,” J. Phys. Chem. B 115, 5227–5233 (2011).
[Crossref]

Lembessis, V. E.

M. Babiker, D. L. Andrews, and V. E. Lembessis, “Atoms in complex twisted light,” J. Opt. 21, 013001 (2019).
[Crossref]

Li, C.

Li, F.

R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
[Crossref]

Li, T. E.

T. E. Li, H.-T. Chen, and J. E. Subotnik, “Comparison of different classical, semiclassical, and quantum treatments of light-matter interactions: understanding energy conservation,” J. Chem. Theory Comput. 15, 1957–1973 (2019).
[Crossref]

T. E. Li, H.-T. Chen, A. Nitzan, M. Sukharev, and J. E. Subotnik, “A necessary trade-off for semiclassical electrodynamics: accurate short-range Coulomb interactions versus the enforcement of causality?” J. Phys. Chem. Lett. 9, 5955–5961 (2018).
[Crossref]

Li, X.

Lim, Z. B.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Lin, S.

I. D. Hands, S. Lin, S. R. Meech, and D. L. Andrews, “A quantum electrodynamical treatment of second harmonic generation through phase conjugate six-wave mixing: polarization analysis,” J. Chem. Phys. 109, 10580–10586 (1998).
[Crossref]

Litvinenko, K. L.

G. F. White, K. L. Litvinenko, S. R. Meech, D. L. Andrews, and A. J. Thomson, “Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin,” Photochem. Photobiol. Sci. 3, 47–55 (2004).
[Crossref]

Liu, R.

R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
[Crossref]

Liu, X.

Lo, L.-W.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Loudon, R.

P. W. Milonni, R. Loudon, P. R. Berman, and S. M. Barnett, “Linear polarizabilities of two- and three-level atoms,” Phys. Rev. A 77, 043835 (2008).
[Crossref]

R. Loudon, The Quantum Theory of Light (Oxford University, 2000).

Lucchesini, A.

Lusk, M. T.

X. Zang and M. T. Lusk, “Twisted molecular excitons as mediators for changing the angular momentum of light,” Phys. Rev. A 96, 013819 (2017).
[Crossref]

Ma, L.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Malagnino, N.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214, 15–24 (2002).
[Crossref]

Marcuse, D.

D. Marcuse, Principles of Quantum Electronics (Elsevier, 2012).

Marsili, P.

Mathevet, R.

Matuszewski, M.

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

May, V.

V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley, 2008).

McColl, I. H.

L. D. Barron, L. Hecht, I. H. McColl, and E. W. Blanch, “Raman optical activity comes of age,” Mol. Phys. 102, 731–744 (2004).
[Crossref]

L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
[Crossref]

Meath, W. J.

D. L. Andrews and W. J. Meath, “On the role of permanent dipoles in second-harmonic generation,” J. Phys. B 26, 4633–4641 (1993).
[Crossref]

W. J. Meath and E. A. Power, “On the interaction of elliptically polarized light with molecules: the effects of both permanent and transition multipole moments on multiphoton absorption and chiroptical effects,” J. Mod. Opt. 36, 977–1002 (1989).
[Crossref]

W. J. Meath and E. A. Power, “On the effects of diagonal dipole matrix elements in multi-photon resonance profiles using two-level systems as models,” Mol. Phys. 51, 585–600 (1984).
[Crossref]

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B 17, 763–781 (1984).
[Crossref]

Meech, S. R.

G. F. White, K. L. Litvinenko, S. R. Meech, D. L. Andrews, and A. J. Thomson, “Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin,” Photochem. Photobiol. Sci. 3, 47–55 (2004).
[Crossref]

I. D. Hands, S. Lin, S. R. Meech, and D. L. Andrews, “A quantum electrodynamical treatment of second harmonic generation through phase conjugate six-wave mixing: polarization analysis,” J. Chem. Phys. 109, 10580–10586 (1998).
[Crossref]

Merlet, É.

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

Milonni, P. W.

P. W. Milonni, R. Loudon, P. R. Berman, and S. M. Barnett, “Linear polarizabilities of two- and three-level atoms,” Phys. Rev. A 77, 043835 (2008).
[Crossref]

P. R. Berman, R. W. Boyd, and P. W. Milonni, “Polarizability and the optical theorem for a two-level atom with radiative broadening,” Phys. Rev. A 74, 053816 (2006).
[Crossref]

P. W. Milonni and R. W. Boyd, “Influence of radiative damping on the optical-frequency susceptibility,” Phys. Rev. A 69, 023814 (2004).
[Crossref]

P. L. Knight and P. W. Milonni, “The Rabi frequency in optical spectra,” Phys. Rep. 66, 21–107 (1980).
[Crossref]

P. W. Milonni, “Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory,” Phys. Rep. 25, 1–81 (1976).
[Crossref]

P. W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1993).

Min, A.

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

Miranowicz, A.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).
[Crossref]

Moad, A. J.

A. J. Moad and G. J. Simpson, “A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies,” J. Phys. Chem. B 108, 3548–3562 (2004).
[Crossref]

Moll, K. D.

K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd, “Conical harmonic generation in isotropic materials,” Phys. Rev. Lett. 88, 153901 (2002).
[Crossref]

Moon, C. J.

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

Moreau, P.-A.

P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Ghost imaging using optical correlations,” Laser Photon. Rev. 12, 1700143 (2018).
[Crossref]

Moreno, K.

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

Mou, C.-Y.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Naguleswaran, S.

L. C. Dávila Romero, S. Naguleswaran, G. E. Stedman, and D. L. Andrews, “Electro-optic response in isotropic media,” Nonlinear Opt. 23, 191–201 (2000).

D. L. Andrews, S. Naguleswaran, and G. E. Stedman, “Phenomenological damping of nonlinear-optical response tensors,” Phys. Rev. A 57, 4925–4929 (1998).
[Crossref]

Nessler, R.

T. Begzjav and R. Nessler, “On three-dimensional rotational averages of odd-rank tensors,” Phys. Scr. 94, 105504 (2019).
[Crossref]

Ngen, E. J.

E. J. Ngen, L. Xiao, P. Rajaputra, X. Yan, and Y. You, “Enhanced singlet oxygen generation from a porphyrin–rhodamine B dyad by two-photon excitation through resonance energy transfer,” Photochem. Photobiol. 89, 841–848 (2013).
[Crossref]

Nielsen, K.

L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th anniversary eds. (Cambridge University, 2010).

Nio, M.

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, “New determination of the fine structure constant from the electron g-value and QED,” Phys. Rev. Lett. 97, 030802 (2006).
[Crossref]

Nitzan, A.

T. E. Li, H.-T. Chen, A. Nitzan, M. Sukharev, and J. E. Subotnik, “A necessary trade-off for semiclassical electrodynamics: accurate short-range Coulomb interactions versus the enforcement of causality?” J. Phys. Chem. Lett. 9, 5955–5961 (2018).
[Crossref]

Nori, F.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Nunes, F.

J. Weiner and F. Nunes, Light-Matter Interaction. Physics and Engineering at the Nanoscale (Oxford University, 2013).

Nyk, M.

S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
[Crossref]

Oar, M. A.

M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
[Crossref]

Odom, B.

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, “New determination of the fine structure constant from the electron g-value and QED,” Phys. Rev. Lett. 97, 030802 (2006).
[Crossref]

Oh, S. S.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1, 87 (2018).
[Crossref]

Ohnoutek, L.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Ohulchanskyy, T. Y.

M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
[Crossref]

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

Olivier, C.

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

Ouellet, H.

Pachucki, K.

X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
[Crossref]

Padgett, M. J.

P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Ghost imaging using optical correlations,” Laser Photon. Rev. 12, 1700143 (2018).
[Crossref]

R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
[Crossref]

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76, 026401 (2013).
[Crossref]

Paiva, R. R.

E. Pedrozo-Peñafiel, R. R. Paiva, F. J. Vivanco, V. S. Bagnato, and K. M. Farias, “Two-photon cooperative absorption in colliding cold Na atoms,” Phys. Rev. Lett. 108, 253004 (2012).
[Crossref]

Parker, M. A.

M. A. Parker, Physics of Optoelectronics (CRC Press, 2005).

Pašteka, L. F.

P. Schwerdtfeger, L. F. Pašteka, A. Punnett, and P. Bowman, “Relativistic and quantum electrodynamic effects in superheavy elements,” Nucl. Phys. A 944, 551–577 (2015).
[Crossref]

Pedrozo-Peñafiel, E.

E. Pedrozo-Peñafiel, R. R. Paiva, F. J. Vivanco, V. S. Bagnato, and K. M. Farias, “Two-photon cooperative absorption in colliding cold Na atoms,” Phys. Rev. Lett. 108, 253004 (2012).
[Crossref]

Perona, A.

Persico, F.

G. Compagno, K. Dietz, and F. Persico, “QED theory of harmonic emission by a strongly driven atom,” J. Phys. B 27, 4779–4815 (1994).
[Crossref]

Persoons, A.

E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
[Crossref]

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[Crossref]

Pesce, G.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214, 15–24 (2002).
[Crossref]

Phillips, D. B.

R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
[Crossref]

Polder, D.

H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73, 360–372 (1948).
[Crossref]

Poschinger, U. G.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
[Crossref]

Power, E. A.

E. A. Power and T. Thirunamachandran, “Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states,” Phys. Rev. A 47, 2539–2551 (1993).
[Crossref]

W. J. Meath and E. A. Power, “On the interaction of elliptically polarized light with molecules: the effects of both permanent and transition multipole moments on multiphoton absorption and chiroptical effects,” J. Mod. Opt. 36, 977–1002 (1989).
[Crossref]

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B 17, 763–781 (1984).
[Crossref]

W. J. Meath and E. A. Power, “On the effects of diagonal dipole matrix elements in multi-photon resonance profiles using two-level systems as models,” Mol. Phys. 51, 585–600 (1984).
[Crossref]

D. P. Craig, E. A. Power, and T. Thirunamachandran, “The dynamic terms in induced circular dichroism,” Proc. R. Soc. A 348, 19–38 (1976).
[Crossref]

E. A. Power and T. Thirunamachandran, “Circular dichroism: a general theory based on quantum electrodynamics,” J. Chem. Phys. 60, 3695–3701 (1974).
[Crossref]

L. Gomberoff and E. A. Power, “The resonance transfer of excitation,” Proc. Phys. Soc. London 88, 281–284 (1966).
[Crossref]

E. A. Power and S. Zienau, “Coulomb gauge in non-relativistic quantum electrodynamics and the shape of spectral lines,” Philos. Trans. R. Soc. A 251, 427–454 (1959).
[Crossref]

E. A. Power, Introductory Quantum Electrodynamics (American Elsevier, 1965).

Pradaux-Caggiano, F.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Prasad, P. N.

S. Kim, H. Huang, H. E. Pudavar, Y. Cui, and P. N. Prasad, “Intraparticle energy transfer and fluorescence photoconversion in nanoparticles:  an optical highlighter nanoprobe for two-photon bioimaging,” Chem. Mater. 19, 5650–5656 (2007).
[Crossref]

M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
[Crossref]

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

Premaratne, M.

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” J. Chem. Phys. 147, 074117 (2017).
[Crossref]

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems,” Phys. Rev. B 94, 085133 (2016).
[Crossref]

Pruvost, L.

Pudavar, H. E.

S. Kim, H. Huang, H. E. Pudavar, Y. Cui, and P. N. Prasad, “Intraparticle energy transfer and fluorescence photoconversion in nanoparticles:  an optical highlighter nanoprobe for two-photon bioimaging,” Chem. Mater. 19, 5650–5656 (2007).
[Crossref]

Punnett, A.

P. Schwerdtfeger, L. F. Pašteka, A. Punnett, and P. Bowman, “Relativistic and quantum electrodynamic effects in superheavy elements,” Nucl. Phys. A 944, 551–577 (2015).
[Crossref]

Pyatt, R. D.

R. D. Pyatt and D. P. Shelton, “Hyper-Rayleigh scattering from CH4, CD4, CF4, and CCl4,” J. Chem. Phys. 114, 9938–9946 (2001).
[Crossref]

Qi, D.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Rahaman, A.

Rajaputra, P.

E. J. Ngen, L. Xiao, P. Rajaputra, X. Yan, and Y. You, “Enhanced singlet oxygen generation from a porphyrin–rhodamine B dyad by two-photon excitation through resonance energy transfer,” Photochem. Photobiol. 89, 841–848 (2013).
[Crossref]

Rajwar, D.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

Reiter, D. E.

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1, 87 (2018).
[Crossref]

Rikken, G. L. J. A.

Rios Leite, J. R.

Z. Zheng, P. L. Saldanha, J. R. Rios Leite, and C. Fabre, “Two-photon-two-atom excitation by correlated light states,” Phys. Rev. A 88, 033822 (2013).
[Crossref]

Rodriguez, V.

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

Rodríguez, J.

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281, 865–870 (2008).
[Crossref]

J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, “Optical binding in nanoparticle assembly: potential energy landscapes,” Phys. Rev. A 78, 043805 (2008).
[Crossref]

Rokaj, V.

C. Schäfer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics,” ACS Photon. (in press).
[Crossref]

Romero, L. C. D.

D. L. Andrews, L. C. D. Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004).
[Crossref]

Rubio, A.

J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–matter response in nonrelativistic quantum electrodynamics,” ACS Photon. 6, 2757–2778 (2019).
[Crossref]

C. Schäfer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics,” ACS Photon. (in press).
[Crossref]

Ruggenthaler, M.

J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–matter response in nonrelativistic quantum electrodynamics,” ACS Photon. 6, 2757–2778 (2019).
[Crossref]

C. Schäfer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics,” ACS Photon. (in press).
[Crossref]

Rusimova, K. R.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Ruster, T.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
[Crossref]

Ruud, K.

D. H. Friese, M. T. P. Beerepoot, and K. Ruud, “Rotational averaging of multiphoton absorption cross sections,” J. Chem. Phys. 141, 204103 (2014).
[Crossref]

Saadi, K.

M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral nanoemitter array: a launchpad for optical vortices,” Laser Photon. Rev. 7, 1088–1092 (2013).
[Crossref]

M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 (2013).
[Crossref]

Safari, H.

S. Y. Buhmann, H. Safari, S. Scheel, and A. Salam, “Body-assisted dispersion potentials of diamagnetic atoms,” Phys. Rev. A 87, 012507 (2013).
[Crossref]

Salam, A.

K. A. Forbes and A. Salam, “Kramers-Heisenberg dispersion formula for scattering of twisted light,” Phys. Rev. A 100, 053413 (2019).
[Crossref]

J. S. Ford, A. Salam, and G. A. Jones, “A quantum electrodynamics description of quantum coherence and damping in condensed-phase energy transfer,” J. Phys. Chem. Lett. 10, 5654–5661 (2019).
[Crossref]

D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, “Perspective: quantum Hamiltonians for optical interactions,” J. Chem. Phys. 148, 040901 (2018).
[Crossref]

A. Salam, “The unified theory of resonance energy transfer according to molecular quantum electrodynamics,” Atoms 6, 56 (2018).
[Crossref]

S. Y. Buhmann, H. Safari, S. Scheel, and A. Salam, “Body-assisted dispersion potentials of diamagnetic atoms,” Phys. Rev. A 87, 012507 (2013).
[Crossref]

A. Salam, “Molecular quantum electrodynamics in the Heisenberg picture: a field theoretic viewpoint,” Int. Rev. Phys. Chem. 27, 405–448 (2008).
[Crossref]

A. Salam, “On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules,” J. Chem. Phys. 124, 014302 (2006).
[Crossref]

A. Salam, “Resonant transfer of excitation between two molecules using Maxwell fields,” J. Chem. Phys. 122, 044113 (2005).
[Crossref]

A. Salam, “On the contribution of the diamagnetic coupling term to the two-body retarded dispersion interaction,” J. Phys. B 33, 2181–2193 (2000).
[Crossref]

A. Salam, Non-Relativistic QED Theory of the van der Waals Dispersion Interaction (Springer, 2016).

A. Salam, Molecular Quantum Electrodynamics. Long-Range Intermolecular Interactions (Wiley, 2010).

A. Salam, “Molecular quantum electrodynamics of radiation-induced intermolecular forces,” in Advances in Quantum Chemistry, J. R. Sabin and E. Brandas, eds. (Academic, 2011), pp. 1–34.

Saldanha, P. L.

Z. Zheng, P. L. Saldanha, J. R. Rios Leite, and C. Fabre, “Two-photon-two-atom excitation by correlated light states,” Phys. Rev. A 88, 033822 (2013).
[Crossref]

Samoc, M.

S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
[Crossref]

Sargent, M.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (CRC Press, 1978).

Sasso, A.

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214, 15–24 (2002).
[Crossref]

Savasta, S.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).
[Crossref]

Schäfer, C.

C. Schäfer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics,” ACS Photon. (in press).
[Crossref]

Schatz, G. C.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[Crossref]

Scheel, S.

S. Y. Buhmann, H. Safari, S. Scheel, and A. Salam, “Body-assisted dispersion potentials of diamagnetic atoms,” Phys. Rev. A 87, 012507 (2013).
[Crossref]

Scherer, N. F.

Z. Yan, S. K. Gray, and N. F. Scherer, “Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters,” Nat. Commun. 5, 3751 (2014).
[Crossref]

Schiff, L. I.

L. I. Schiff, Quantum Mechanics (McGraw-Hill, 1955).

Schmidt-Kaler, F.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
[Crossref]

Schmiegelow, C. T.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
[Crossref]

Schulz, J.

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
[Crossref]

Schwerdtfeger, P.

P. Schwerdtfeger, L. F. Pašteka, A. Punnett, and P. Bowman, “Relativistic and quantum electrodynamic effects in superheavy elements,” Nucl. Phys. A 944, 551–577 (2015).
[Crossref]

Schwinger, J.

J. Schwinger, Selected Papers on Quantum Electrodynamics (Dover, 1958).

Scully, M. O.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (CRC Press, 1978).

Serin, J. M.

M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
[Crossref]

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

Setser, D. W.

J. K. Ku, G. Inoue, and D. W. Setser, “Two-photon laser-assisted reaction with xenon/molecular chlorine to form excited xenon chloride (XeCl*) and with xenon/iodine chloride (ICl) to form excited xenon chloride (XeCl*) and excited xenon iodide (XeI*),” J. Phys. Chem. 87, 2989–2993 (1983).
[Crossref]

Shelton, D. P.

R. D. Pyatt and D. P. Shelton, “Hyper-Rayleigh scattering from CH4, CD4, CF4, and CCl4,” J. Chem. Phys. 114, 9938–9946 (2001).
[Crossref]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 2002).

Shirley, J. H.

J. H. Shirley, “Solution of the Schrödinger equation with a Hamiltonian periodic in time,” Phys. Rev. 138, B979–B987 (1965).
[Crossref]

Simpson, G. J.

A. J. Moad and G. J. Simpson, “A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies,” J. Phys. Chem. B 108, 3548–3562 (2004).
[Crossref]

Šindelka, M.

M. Šindelka, “Derivation of coupled Maxwell-Schrödinger equations describing matter-laser interaction from first principles of quantum electrodynamics,” Phys. Rev. A 81, 033833 (2010).
[Crossref]

Souris, J. S.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

Spassova, M.

E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
[Crossref]

Stedman, G. E.

D. L. Andrews, L. C. Dávila Romero, and G. E. Stedman, “Polarizability and the resonance scattering of light: damping sign issues,” Phys. Rev. A 67, 055801 (2003).
[Crossref]

L. C. Dávila Romero, S. Naguleswaran, G. E. Stedman, and D. L. Andrews, “Electro-optic response in isotropic media,” Nonlinear Opt. 23, 191–201 (2000).

D. L. Andrews, S. Naguleswaran, and G. E. Stedman, “Phenomenological damping of nonlinear-optical response tensors,” Phys. Rev. A 57, 4925–4929 (1998).
[Crossref]

Stewart, A. M.

A. M. Stewart, “Why semiclassical electrodynamics is not gauge invariant,” J. Phys. A 33, 9165–9175 (2000).
[Crossref]

Stroud, C. R.

C. R. Stroud and E. T. Jaynes, “Long-term solutions in semiclassical radiation theory,” Phys. Rev. A 1, 106–121 (1970).
[Crossref]

Su, C.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Subotnik, J. E.

T. E. Li, H.-T. Chen, and J. E. Subotnik, “Comparison of different classical, semiclassical, and quantum treatments of light-matter interactions: understanding energy conservation,” J. Chem. Theory Comput. 15, 1957–1973 (2019).
[Crossref]

T. E. Li, H.-T. Chen, A. Nitzan, M. Sukharev, and J. E. Subotnik, “A necessary trade-off for semiclassical electrodynamics: accurate short-range Coulomb interactions versus the enforcement of causality?” J. Phys. Chem. Lett. 9, 5955–5961 (2018).
[Crossref]

Sukharev, M.

T. E. Li, H.-T. Chen, A. Nitzan, M. Sukharev, and J. E. Subotnik, “A necessary trade-off for semiclassical electrodynamics: accurate short-range Coulomb interactions versus the enforcement of causality?” J. Phys. Chem. Lett. 9, 5955–5961 (2018).
[Crossref]

Sun, H.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Sun, J.

Sun, Y. R.

X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
[Crossref]

Syme, C. D.

L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
[Crossref]

Szeremeta, J.

S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
[Crossref]

Takahashi, T.

Tan, L.-S.

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

Tang, K.-C.

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

Tedesco, D.

D. Tedesco and C. Bertucci, “Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: classic approaches and new trends,” J. Pharm. Biomed. Anal. 113, 34–42 (2015).
[Crossref]

Thirunamachandran, T.

E. A. Power and T. Thirunamachandran, “Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states,” Phys. Rev. A 47, 2539–2551 (1993).
[Crossref]

T. Thirunamachandran, “Intermolecular interactions in the presence of an intense radiation field,” Mol. Phys. 40, 393–399 (1980).
[Crossref]

D. L. Andrews and T. Thirunamachandran, “Hyper-Raman scattering by chiral molecules,” J. Chem. Phys. 70, 1027–1030 (1979).
[Crossref]

D. L. Andrews and T. Thirunamachandran, “On three-dimensional rotational averages,” J. Chem. Phys. 67, 5026–5033 (1977).
[Crossref]

D. P. Craig, E. A. Power, and T. Thirunamachandran, “The dynamic terms in induced circular dichroism,” Proc. R. Soc. A 348, 19–38 (1976).
[Crossref]

E. A. Power and T. Thirunamachandran, “Circular dichroism: a general theory based on quantum electrodynamics,” J. Chem. Phys. 60, 3695–3701 (1974).
[Crossref]

D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (Dover, 1998).

Thomson, A. J.

G. F. White, K. L. Litvinenko, S. R. Meech, D. L. Andrews, and A. J. Thomson, “Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin,” Photochem. Photobiol. Sci. 3, 47–55 (2004).
[Crossref]

Tian, N.

N. Tian and Q.-H. Xu, “Enhanced two-photon excitation fluorescence by fluorescence resonance energy transfer using conjugated polymers,” Adv. Mater. 19, 1988–1991 (2007).
[Crossref]

Toninelli, E.

P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Ghost imaging using optical correlations,” Laser Photon. Rev. 12, 1700143 (2018).
[Crossref]

Tseng, F.-G.

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Valev, V. K.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

van den Doel, R.

R. van den Doel and J. J. J. Kokkedee, “Comment on the radiative level shift in the neoclassical radiation theory,” Phys. Rev. A 9, 1468–1469 (1974).
[Crossref]

van der Meer, B. W.

B. W. van der Meer, G. Coker, and S. Y. S. Chen, Resonance Energy Transfer: Theory and Data (VCH, 1994).

Varcoe, B. T. H.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Verbiest, T.

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Verreault, D.

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

Vivanco, F. J.

E. Pedrozo-Peñafiel, R. R. Paiva, F. J. Vivanco, V. S. Bagnato, and K. M. Farias, “Two-photon cooperative absorption in colliding cold Na atoms,” Phys. Rev. Lett. 108, 253004 (2012).
[Crossref]

Wagnière, G.

G. Wagnière, “The evaluation of three-dimensional rotational averages,” J. Chem. Phys. 76, 473–480 (1982).
[Crossref]

Walter, J.

H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, 1944).

Walther, H.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Wang, Y.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Ward, J. F.

J. F. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37, 1–18 (1965).
[Crossref]

Weeraddana, D.

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” J. Chem. Phys. 147, 074117 (2017).
[Crossref]

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems,” Phys. Rev. B 94, 085133 (2016).
[Crossref]

Weiner, J.

J. Weiner and F. Nunes, Light-Matter Interaction. Physics and Engineering at the Nanoscale (Oxford University, 2013).

Welakuh, D. M.

J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–matter response in nonrelativistic quantum electrodynamics,” ACS Photon. 6, 2757–2778 (2019).
[Crossref]

White, G. F.

G. F. White, K. L. Litvinenko, S. R. Meech, D. L. Andrews, and A. J. Thomson, “Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin,” Photochem. Photobiol. Sci. 3, 47–55 (2004).
[Crossref]

Wiedeman, L.

L. Wiedeman, M. E. Fajardo, and V. A. Apkarian, “Electronic relaxation of xenon chloride (Xe2+Cl-) in solid and liquid xenon,” J. Phys. Chem. 92, 342–346 (1988).
[Crossref]

Wilcox, C. H.

C. H. Wilcox, Perturbation Theory and its Applications in Quantum Mechanics (Wiley/Chapman and Hall, 1966).

Wilk, K. A.

S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
[Crossref]

Williams, M. D.

M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Raman scattering mediated by neighboring molecules,” J. Chem. Phys. 144, 174304 (2016).
[Crossref]

M. D. Williams, J. S. Ford, and D. L. Andrews, “Hyper-Rayleigh scattering in centrosymmetric systems,” J. Chem. Phys. 143, 124301 (2015).
[Crossref]

R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
[Crossref]

M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Direct generation of optical vortices,” Phys. Rev. A 89, 033837 (2014).
[Crossref]

M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral nanoemitter array: a launchpad for optical vortices,” Laser Photon. Rev. 7, 1088–1092 (2013).
[Crossref]

M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 (2013).
[Crossref]

M. M. Coles, M. D. Williams, and D. L. Andrews, “Second harmonic generation in isotropic media: six-wave mixing of optical vortices,” Opt. Express 21, 12783–12789 (2013).
[Crossref]

Woolley, R. G.

R. G. Woolley, “Power-Zienau-Woolley representations of nonrelativistic QED for atoms and molecules,” Phys. Rev. Res. 2, 013206 (2020).
[Crossref]

D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, “Perspective: quantum Hamiltonians for optical interactions,” J. Chem. Phys. 148, 040901 (2018).
[Crossref]

R. G. Woolley, “Gauge invariance in non–relativistic electrodynamics,” Proc. R. Soc. A 456, 1803–1819 (2000).
[Crossref]

R. G. Woolley, “Charged particles, gauge invariance, and molecular electrodynamics,” Int. J. Quant. Chem. 74, 531–545 (1999).
[Crossref]

R. G. Woolley, “Molecular quantum electrodynamics,” Proc. R. Soc. A 321, 557–572 (1971).
[Crossref]

R. G. Woolley, “The electrodynamics of atoms and molecules,” in Advances in Chemical Physics (Wiley, 1975), Vol. 33, pp. 153–233.

Xiao, C.

Xiao, L.

E. J. Ngen, L. Xiao, P. Rajaputra, X. Yan, and Y. You, “Enhanced singlet oxygen generation from a porphyrin–rhodamine B dyad by two-photon excitation through resonance energy transfer,” Photochem. Photobiol. 89, 841–848 (2013).
[Crossref]

Xing, P.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Xu, Q.-H.

N. Tian and Q.-H. Xu, “Enhanced two-photon excitation fluorescence by fluorescence resonance energy transfer using conjugated polymers,” Adv. Mater. 19, 1988–1991 (2007).
[Crossref]

Yamamoto, S.

S. Yamamoto, J. Kaminský, and P. Bouř, “Structure and vibrational motion of insulin from Raman optical activity spectra,” Anal. Chem. 84, 2440–2451 (2012).
[Crossref]

Yan, X.

E. J. Ngen, L. Xiao, P. Rajaputra, X. Yan, and Y. You, “Enhanced singlet oxygen generation from a porphyrin–rhodamine B dyad by two-photon excitation through resonance energy transfer,” Photochem. Photobiol. 89, 841–848 (2013).
[Crossref]

Yan, Z.

Z. Yan, S. K. Gray, and N. F. Scherer, “Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters,” Nat. Commun. 5, 3751 (2014).
[Crossref]

Yang, C.-S.

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Yang, L.

You, Y.

E. J. Ngen, L. Xiao, P. Rajaputra, X. Yan, and Y. You, “Enhanced singlet oxygen generation from a porphyrin–rhodamine B dyad by two-photon excitation through resonance energy transfer,” Photochem. Photobiol. 89, 841–848 (2013).
[Crossref]

Zang, X.

X. Zang and M. T. Lusk, “Twisted molecular excitons as mediators for changing the angular momentum of light,” Phys. Rev. A 96, 013819 (2017).
[Crossref]

Zangwill, A.

A. Zangwill, Modern Electrodynamics (Cambridge University, 2013).

Zannotti, A.

A. Zannotti, F. Diebel, M. Boguslawski, and C. Denz, “Chiral light in helically twisted photonic lattices,” Adv. Opt. Mater. 5, 1600629 (2017).
[Crossref]

Zemanek, P.

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[Crossref]

Zhang, D.

Zhang, J.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Zhang, Q.

Zhang, Y.

Zhang, Z.

Zheng, X.

X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
[Crossref]

Zheng, Z.

Z. Zheng, P. L. Saldanha, J. R. Rios Leite, and C. Fabre, “Two-photon-two-atom excitation by correlated light states,” Phys. Rev. A 88, 033822 (2013).
[Crossref]

Zhou, Y.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Zhu, M.

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Zienau, S.

E. A. Power and S. Zienau, “Coulomb gauge in non-relativistic quantum electrodynamics and the shape of spectral lines,” Philos. Trans. R. Soc. A 251, 427–454 (1959).
[Crossref]

Acc. Chem. Res. (1)

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[Crossref]

ACS Photon. (1)

J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A. Rubio, “Light–matter response in nonrelativistic quantum electrodynamics,” ACS Photon. 6, 2757–2778 (2019).
[Crossref]

Adv. Chem. Phys. (1)

D. L. Andrews and K. P. Hopkins, “Synergistic effects in two-photon absorption: the quantum electrodynamics of bimolecular mean-frequency absorption,” Adv. Chem. Phys. 77, 39–102 (1990).
[Crossref]

Adv. Mater. (1)

N. Tian and Q.-H. Xu, “Enhanced two-photon excitation fluorescence by fluorescence resonance energy transfer using conjugated polymers,” Adv. Mater. 19, 1988–1991 (2007).
[Crossref]

Adv. Opt. Mater. (2)

A. Zannotti, F. Diebel, M. Boguslawski, and C. Denz, “Chiral light in helically twisted photonic lattices,” Adv. Opt. Mater. 5, 1600629 (2017).
[Crossref]

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient energy transfer under two-photon excitation in a 3D, supramolecular, Zn(II)-coordinated, self-assembled organic network,” Adv. Opt. Mater. 2, 40–47 (2014).
[Crossref]

Am. J. Phys. (1)

D. L. Andrews, “A simple statistical treatment of multiphoton absorption,” Am. J. Phys. 53, 1001–1002 (1985).
[Crossref]

Anal. Chem. (1)

S. Yamamoto, J. Kaminský, and P. Bouř, “Structure and vibrational motion of insulin from Raman optical activity spectra,” Anal. Chem. 84, 2440–2451 (2012).
[Crossref]

Ann. Phys. (Berlin) (2)

G. Gouesbet, “Latest achievements in generalized Lorenz-Mie theories: a commented reference database,” Ann. Phys. (Berlin) 526, 461–489 (2014).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “The role of virtual photons in nanoscale photonics,” Ann. Phys. (Berlin) 526, 173–186 (2014).
[Crossref]

Annu. Rev. Phys. Chem. (1)

L. D. Barron and A. D. Buckingham, “Rayleigh and Raman optical activity,” Annu. Rev. Phys. Chem. 26, 381–396 (1975).
[Crossref]

Appl. Phys. B (1)

D. S. Bradshaw and D. L. Andrews, “The control of near-field optics: imposing direction through coupling with off-resonant laser light,” Appl. Phys. B 93, 13–20 (2008).
[Crossref]

Appl. Sci. (1)

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Off-resonance control and all-optical switching: expanded dimensions in nonlinear optics,” Appl. Sci. 9, 4252 (2019).
[Crossref]

Atoms (1)

A. Salam, “The unified theory of resonance energy transfer according to molecular quantum electrodynamics,” Atoms 6, 56 (2018).
[Crossref]

Biomed. Opt. Express (1)

Biomed. Spectrosc. Imag. (2)

P. I. Haris, “Laurence Barron: the founding father of Raman optical activity,” Biomed. Spectrosc. Imag. 4, 219–222 (2015).
[Crossref]

L. D. Barron, “The development of biomolecular Raman optical activity spectroscopy,” Biomed. Spectrosc. Imag. 4, 223–253 (2015).
[Crossref]

Chem. Mater. (2)

M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fréchet, T. Y. Ohulchanskyy, and P. N. Prasad, “Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer,” Chem. Mater. 17, 2267–2275 (2005).
[Crossref]

S. Kim, H. Huang, H. E. Pudavar, Y. Cui, and P. N. Prasad, “Intraparticle energy transfer and fluorescence photoconversion in nanoparticles:  an optical highlighter nanoprobe for two-photon bioimaging,” Chem. Mater. 19, 5650–5656 (2007).
[Crossref]

Chem. Phys. (2)

D. L. Andrews, “A unified theory of radiative and radiationless molecular energy transfer,” Chem. Phys. 135, 195–201 (1989).
[Crossref]

G. Juzeliūnas, “Molecular-radiation and molecule-molecule processes in condensed media: a microscopic QED theory,” Chem. Phys. 198, 145–158 (1995).
[Crossref]

Chem. Phys. Lett. (1)

E. Botek, M. Spassova, B. Champagne, I. Asselberghs, A. Persoons, and K. Clays, “Hyper-Rayleigh scattering of neutral and charged helicenes,” Chem. Phys. Lett. 412, 274–279 (2005).
[Crossref]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42–55 (2008).
[Crossref]

Chirality (1)

S. Allenmark, “Induced circular dichroism by chiral molecular interaction,” Chirality 15, 409–422 (2003).
[Crossref]

Commun. Phys. (1)

R. M. Kerber, J. M. Fitzgerald, S. S. Oh, D. E. Reiter, and O. Hess, “Orbital angular momentum dichroism in nanoantennas,” Commun. Phys. 1, 87 (2018).
[Crossref]

Eur. J. Phys. (3)

D. L. Andrews and D. S. Bradshaw, “A photonic basis for deriving nonlinear optical response,” Eur. J. Phys. 30, 239–251 (2009).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach,” Eur. J. Phys. 25, 845–858 (2004).
[Crossref]

D. S. Bradshaw, K. A. Forbes, and D. L. Andrews, “Quantum field representation of photon-molecule interactions,” Eur. J. Phys. 41, 025406 (2020).
[Crossref]

Faraday Discuss. (1)

D. L. Andrews, “Two-group Raman optical-activity revisited,” Faraday Discuss. 99, 375–382 (1994).
[Crossref]

Front. Phys. (1)

G. A. Jones and D. S. Bradshaw, “Resonance energy transfer: from fundamental theory to recent applications,” Front. Phys. 7, 100 (2019).
[Crossref]

Inorg. Chem. (1)

M. Zhu, J. Zhang, Y. Zhou, P. Xing, L. Gong, C. Su, D. Qi, H. Du, Y. Bian, and J. Jiang, “Two-photon excited FRET dyads for lysosome-targeted imaging and photodynamic therapy,” Inorg. Chem. 57, 11537–11542 (2018).
[Crossref]

Int. J. Quant. Chem. (1)

R. G. Woolley, “Charged particles, gauge invariance, and molecular electrodynamics,” Int. J. Quant. Chem. 74, 531–545 (1999).
[Crossref]

Int. Rev. Phys. Chem. (1)

A. Salam, “Molecular quantum electrodynamics in the Heisenberg picture: a field theoretic viewpoint,” Int. Rev. Phys. Chem. 27, 405–448 (2008).
[Crossref]

J. Am. Chem. Soc. (2)

W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy, and P. N. Prasad, “Singlet oxygen generation via two-photon excited FRET,” J. Am. Chem. Soc. 126, 5380–5381 (2004).
[Crossref]

D. Verreault, K. Moreno, É. Merlet, F. Adamietz, B. Kauffmann, Y. Ferrand, C. Olivier, and V. Rodriguez, “Hyper-Rayleigh scattering as a new chiroptical method: uncovering the nonlinear optical activity of aromatic oligoamide foldamers,” J. Am. Chem. Soc. 142, 257–263 (2020).
[Crossref]

J. Chem. Phys. (24)

D. S. Bradshaw and D. L. Andrews, “Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching,” J. Chem. Phys. 128, 144506 (2008).
[Crossref]

P. Allcock and D. L. Andrews, “Two-photon fluorescence: resonance energy transfer,” J. Chem. Phys. 108, 3089–3095 (1998).
[Crossref]

D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption,” J. Chem. Phys. 78, 1088–1094 (1983).
[Crossref]

D. L. Andrews and M. J. Harlow, “Cooperative two-photon absorption. II,” J. Chem. Phys. 80, 4753–4760 (1984).
[Crossref]

M. E. Fajardo and V. A. Apkarian, “Cooperative photoabsorption induced charge transfer reaction dynamics in rare gas solids. I. Photodynamics of localized xenon chloride exciplexes,” J. Chem. Phys. 85, 5660–5681 (1986).
[Crossref]

M. Boivineau, J. Le Calvé, M. C. Castex, and C. Jouvet, “Formation of the XeBr* excimer by double optical excitation of the Xe–Br2 van der Waals complex,” J. Chem. Phys. 84, 4712–4713 (1986).
[Crossref]

D. L. Andrews and T. Thirunamachandran, “Hyper-Raman scattering by chiral molecules,” J. Chem. Phys. 70, 1027–1030 (1979).
[Crossref]

R. Grinter and G. A. Jones, “Resonance energy transfer: the unified theory via vector spherical harmonics,” J. Chem. Phys. 145, 074107 (2016).
[Crossref]

I. D. Hands, S. Lin, S. R. Meech, and D. L. Andrews, “A quantum electrodynamical treatment of second harmonic generation through phase conjugate six-wave mixing: polarization analysis,” J. Chem. Phys. 109, 10580–10586 (1998).
[Crossref]

J. Kohel and J. W. Keto, “Energy disposal in the two-photon laser-assisted reaction in xenon and chlorine gas mixtures,” J. Chem. Phys. 113, 10551–10559 (2000).
[Crossref]

A. Salam, “On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules,” J. Chem. Phys. 124, 014302 (2006).
[Crossref]

M. D. Williams, D. S. Bradshaw, and D. L. Andrews, “Raman scattering mediated by neighboring molecules,” J. Chem. Phys. 144, 174304 (2016).
[Crossref]

D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, “Perspective: quantum Hamiltonians for optical interactions,” J. Chem. Phys. 148, 040901 (2018).
[Crossref]

M. D. Williams, J. S. Ford, and D. L. Andrews, “Hyper-Rayleigh scattering in centrosymmetric systems,” J. Chem. Phys. 143, 124301 (2015).
[Crossref]

R. D. Pyatt and D. P. Shelton, “Hyper-Rayleigh scattering from CH4, CD4, CF4, and CCl4,” J. Chem. Phys. 114, 9938–9946 (2001).
[Crossref]

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[Crossref]

D. L. Andrews and T. Thirunamachandran, “On three-dimensional rotational averages,” J. Chem. Phys. 67, 5026–5033 (1977).
[Crossref]

G. Wagnière, “The evaluation of three-dimensional rotational averages,” J. Chem. Phys. 76, 473–480 (1982).
[Crossref]

D. H. Friese, M. T. P. Beerepoot, and K. Ruud, “Rotational averaging of multiphoton absorption cross sections,” J. Chem. Phys. 141, 204103 (2014).
[Crossref]

E. A. Power and T. Thirunamachandran, “Circular dichroism: a general theory based on quantum electrodynamics,” J. Chem. Phys. 60, 3695–3701 (1974).
[Crossref]

D. L. Andrews, “Rayleigh and Raman optical activity: an analysis of the dependence on scattering angle,” J. Chem. Phys. 72, 4141–4144 (1980).
[Crossref]

A. Salam, “Resonant transfer of excitation between two molecules using Maxwell fields,” J. Chem. Phys. 122, 044113 (2005).
[Crossref]

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” J. Chem. Phys. 147, 074117 (2017).
[Crossref]

G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: the unified theory revisited,” J. Chem. Phys. 119, 2264–2274 (2003).
[Crossref]

J. Chem. Theory Comput. (1)

T. E. Li, H.-T. Chen, and J. E. Subotnik, “Comparison of different classical, semiclassical, and quantum treatments of light-matter interactions: understanding energy conservation,” J. Chem. Theory Comput. 15, 1957–1973 (2019).
[Crossref]

J. Mod. Opt. (1)

W. J. Meath and E. A. Power, “On the interaction of elliptically polarized light with molecules: the effects of both permanent and transition multipole moments on multiphoton absorption and chiroptical effects,” J. Mod. Opt. 36, 977–1002 (1989).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

D. S. Bradshaw and D. L. Andrews, “Quantum channels in nonlinear optical processes,” J. Nonlinear Opt. Phys. Mater. 18, 285–299 (2009).
[Crossref]

J. Opt. (3)

D. L. Andrews, “Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables,” J. Opt. 20, 033003 (2018).
[Crossref]

M. Babiker, D. L. Andrews, and V. E. Lembessis, “Atoms in complex twisted light,” J. Opt. 21, 013001 (2019).
[Crossref]

R. Liu, D. B. Phillips, F. Li, M. D. Williams, D. L. Andrews, and M. J. Padgett, “Discrete emitters as a source of orbital angular momentum,” J. Opt. 17, 045608 (2015).
[Crossref]

J. Opt. B (1)

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66–S72 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Pharm. Biomed. Anal. (1)

D. Tedesco and C. Bertucci, “Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: classic approaches and new trends,” J. Pharm. Biomed. Anal. 113, 34–42 (2015).
[Crossref]

J. Phys. A (2)

D. L. Andrews and W. A. Ghoul, “Eighth rank isotropic tensors and rotational averages,” J. Phys. A 14, 1281–1290 (1981).
[Crossref]

A. M. Stewart, “Why semiclassical electrodynamics is not gauge invariant,” J. Phys. A 33, 9165–9175 (2000).
[Crossref]

J. Phys. B (9)

R. D. Jenkins, D. L. Andrews, and L. C. Dávila Romero, “A new diagrammatic methodology for non-relativistic quantum electrodynamics,” J. Phys. B 35, 445–468 (2002).
[Crossref]

D. L. Andrews and W. J. Meath, “On the role of permanent dipoles in second-harmonic generation,” J. Phys. B 26, 4633–4641 (1993).
[Crossref]

D. L. Andrews, “Harmonic generation in free molecules,” J. Phys. B 13, 4091–4099 (1980).
[Crossref]

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[Crossref]

G. Compagno, K. Dietz, and F. Persico, “QED theory of harmonic emission by a strongly driven atom,” J. Phys. B 27, 4779–4815 (1994).
[Crossref]

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B 17, 763–781 (1984).
[Crossref]

A. Salam, “On the contribution of the diamagnetic coupling term to the two-body retarded dispersion interaction,” J. Phys. B 33, 2181–2193 (2000).
[Crossref]

P. Allcock and D. L. Andrews, “Six-wave mixing: secular resonances in a higher-order mechanism for second-harmonic generation,” J. Phys. B 30, 3731–3742 (1997).
[Crossref]

T. Jahnke, “Interatomic and intermolecular Coulombic decay: the coming of age story,” J. Phys. B 48, 082001 (2015).
[Crossref]

J. Phys. Chem. (2)

J. K. Ku, G. Inoue, and D. W. Setser, “Two-photon laser-assisted reaction with xenon/molecular chlorine to form excited xenon chloride (XeCl*) and with xenon/iodine chloride (ICl) to form excited xenon chloride (XeCl*) and excited xenon iodide (XeI*),” J. Phys. Chem. 87, 2989–2993 (1983).
[Crossref]

L. Wiedeman, M. E. Fajardo, and V. A. Apkarian, “Electronic relaxation of xenon chloride (Xe2+Cl-) in solid and liquid xenon,” J. Phys. Chem. 92, 342–346 (1988).
[Crossref]

J. Phys. Chem. A (2)

D. S. Bradshaw and D. L. Andrews, “Mechanism for optical enhancement and suppression of fluorescence,” J. Phys. Chem. A 113, 6537–6539 (2009).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “Interparticle interactions: energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation,” J. Phys. Chem. A 117, 75–82 (2013).
[Crossref]

J. Phys. Chem. B (3)

D. L. Andrews, “Effects of intrinsic local fields on molecular fluorescence and energy transfer: dipole mechanisms and surface potentials,” J. Phys. Chem. B 123, 5015–5023 (2019).
[Crossref]

A. J. Moad and G. J. Simpson, “A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies,” J. Phys. Chem. B 108, 3548–3562 (2004).
[Crossref]

J. M. Leeder, D. S. Bradshaw, and D. L. Andrews, “Laser-controlled fluorescence in two-level systems,” J. Phys. Chem. B 115, 5227–5233 (2011).
[Crossref]

J. Phys. Chem. C (1)

S. Drozdek, J. Szeremeta, L. Lamch, M. Nyk, M. Samoc, and K. A. Wilk, “Two-photon induced fluorescence energy transfer in polymeric nanocapsules containing CdSexS1−x/ZnS core/shell quantum dots and zinc(II) phthalocyanine,” J. Phys. Chem. C 120, 15460–15470 (2016).
[Crossref]

J. Phys. Chem. Lett. (4)

T. E. Li, H.-T. Chen, A. Nitzan, M. Sukharev, and J. E. Subotnik, “A necessary trade-off for semiclassical electrodynamics: accurate short-range Coulomb interactions versus the enforcement of causality?” J. Phys. Chem. Lett. 9, 5955–5961 (2018).
[Crossref]

A. Hong, C. J. Moon, H. Jang, A. Min, M. Y. Choi, J. Heo, and N. J. Kim, “Isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (–)-methyl l-lactate,” J. Phys. Chem. Lett. 9, 476–480 (2018).
[Crossref]

D. L. Andrews, “Physicality of the photon,” J. Phys. Chem. Lett. 4, 3878–3884 (2013).
[Crossref]

J. S. Ford, A. Salam, and G. A. Jones, “A quantum electrodynamics description of quantum coherence and damping in condensed-phase energy transfer,” J. Phys. Chem. Lett. 10, 5654–5661 (2019).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009).
[Crossref]

J. Raman Spectrosc. (1)

D. L. Andrews, “An accretive mechanism for blue-shifted fluorescence in strongly pumped systems: resonance energy transfer with Raman emission,” J. Raman Spectrosc. 31, 791–796 (2000).
[Crossref]

J. Spectrosc. (1)

L. D. Barron, E. W. Blanch, I. H. McColl, C. D. Syme, L. Hecht, and K. Nielsen, “Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity,” J. Spectrosc. 17, 101–126 (2003).
[Crossref]

Laser Photon. Rev. (2)

P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Ghost imaging using optical correlations,” Laser Photon. Rev. 12, 1700143 (2018).
[Crossref]

M. M. Coles, M. D. Williams, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Chiral nanoemitter array: a launchpad for optical vortices,” Laser Photon. Rev. 7, 1088–1092 (2013).
[Crossref]

Methods Appl. Fluoresc. (1)

D. L. Andrews, “Chirality in fluorescence and energy transfer,” Methods Appl. Fluoresc. 7, 032001 (2019).
[Crossref]

Mol. Phys. (4)

L. D. Barron, L. Hecht, I. H. McColl, and E. W. Blanch, “Raman optical activity comes of age,” Mol. Phys. 102, 731–744 (2004).
[Crossref]

T. Thirunamachandran, “Intermolecular interactions in the presence of an intense radiation field,” Mol. Phys. 40, 393–399 (1980).
[Crossref]

W. J. Meath and E. A. Power, “On the effects of diagonal dipole matrix elements in multi-photon resonance profiles using two-level systems as models,” Mol. Phys. 51, 585–600 (1984).
[Crossref]

L. D. Barron and A. D. Buckingham, “Rayleigh and Raman scattering from optically active molecules,” Mol. Phys. 20, 1111–1119 (1971).
[Crossref]

Nano Today (1)

S.-H. Cheng, C.-C. Hsieh, N.-T. Chen, C.-H. Chu, C.-M. Huang, P.-T. Chou, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, and L.-W. Lo, “Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy,” Nano Today 6(6), 552–563 (2011).
[Crossref]

Nanophotonics (1)

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Optical binding of nanoparticles,” Nanophotonics 9, 1–17 (2020).
[Crossref]

Nat. Commun. (3)

Z. Yan, S. K. Gray, and N. F. Scherer, “Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters,” Nat. Commun. 5, 3751 (2014).
[Crossref]

J. L. Hemmerich, R. Bennett, and S. Y. Buhmann, “The influence of retardation and dielectric environments on interatomic Coulombic decay,” Nat. Commun. 9, 2934 (2018).
[Crossref]

C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).
[Crossref]

Nat. Rev. Phys. (1)

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1, 19–40 (2019).
[Crossref]

New J. Phys. (1)

J. E. Frost and G. A. Jones, “A quantum dynamical comparison of the electronic couplings derived from quantum electrodynamics and Förster theory: application to 2D molecular aggregates,” New J. Phys. 16, 113067 (2014).
[Crossref]

Nonlinear Opt. (1)

L. C. Dávila Romero, S. Naguleswaran, G. E. Stedman, and D. L. Andrews, “Electro-optic response in isotropic media,” Nonlinear Opt. 23, 191–201 (2000).

Nucl. Phys. A (1)

P. Schwerdtfeger, L. F. Pašteka, A. Punnett, and P. Bowman, “Relativistic and quantum electrodynamic effects in superheavy elements,” Nucl. Phys. A 944, 551–577 (2015).
[Crossref]

Opt. Commun. (5)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurements of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214, 15–24 (2002).
[Crossref]

L. C. Dávila Romero, J. Rodríguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281, 865–870 (2008).
[Crossref]

D. L. Andrews, L. C. D. Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004).
[Crossref]

D. L. Andrews and D. S. Bradshaw, “Off-resonant activation of optical emission,” Opt. Commun. 283, 4365–4367 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Philos. Trans. R. Soc. A (2)

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos. Trans. R. Soc. A 375, 20150436 (2017).
[Crossref]

E. A. Power and S. Zienau, “Coulomb gauge in non-relativistic quantum electrodynamics and the shape of spectral lines,” Philos. Trans. R. Soc. A 251, 427–454 (1959).
[Crossref]

Photochem. Photobiol. (1)

E. J. Ngen, L. Xiao, P. Rajaputra, X. Yan, and Y. You, “Enhanced singlet oxygen generation from a porphyrin–rhodamine B dyad by two-photon excitation through resonance energy transfer,” Photochem. Photobiol. 89, 841–848 (2013).
[Crossref]

Photochem. Photobiol. Sci. (1)

G. F. White, K. L. Litvinenko, S. R. Meech, D. L. Andrews, and A. J. Thomson, “Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin,” Photochem. Photobiol. Sci. 3, 47–55 (2004).
[Crossref]

Photonics (1)

D. S. Bradshaw, K. A. Forbes, J. M. Leeder, and D. L. Andrews, “Chirality in optical trapping and optical binding,” Photonics 2, 483–497 (2015).
[Crossref]

Phys. Rep. (2)

P. W. Milonni, “Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory,” Phys. Rep. 25, 1–81 (1976).
[Crossref]

P. L. Knight and P. W. Milonni, “The Rabi frequency in optical spectra,” Phys. Rep. 66, 21–107 (1980).
[Crossref]

Phys. Rev. (5)

R. P. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev. 76, 769–789 (1949).
[Crossref]

J. H. Shirley, “Solution of the Schrödinger equation with a Hamiltonian periodic in time,” Phys. Rev. 138, B979–B987 (1965).
[Crossref]

M. D. Crisp and E. T. Jaynes, “Radiative effects in semiclassical theory,” Phys. Rev. 179, 1253–1261 (1969).
[Crossref]

H. B. G. Casimir and D. Polder, “The influence of retardation on the London-van der Waals forces,” Phys. Rev. 73, 360–372 (1948).
[Crossref]

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968).
[Crossref]

Phys. Rev. A (26)

D. S. Bradshaw and D. L. Andrews, “Optically induced forces and torques: interactions between nanoparticles in a laser beam,” Phys. Rev. A 72, 033816 (2005).
[Crossref]

D. L. Andrews and N. P. Blake, “Forbidden nature of multipolar contributions to second-harmonic generation in isotropic fluids,” Phys. Rev. A 38, 3113–3115 (1988).
[Crossref]

K. A. Forbes, J. S. Ford, G. A. Jones, and D. L. Andrews, “Quantum delocalization in photon-pair generation,” Phys. Rev. A 96, 023850 (2017).
[Crossref]

D. L. Andrews and M. J. Harlow, “Phased and Boltzmann-weighted rotational averages,” Phys. Rev. A 29, 2796–2806 (1984).
[Crossref]

J. Rodríguez, L. C. Dávila Romero, and D. L. Andrews, “Optical binding in nanoparticle assembly: potential energy landscapes,” Phys. Rev. A 78, 043805 (2008).
[Crossref]

C. R. Stroud and E. T. Jaynes, “Long-term solutions in semiclassical radiation theory,” Phys. Rev. A 1, 106–121 (1970).
[Crossref]

R. van den Doel and J. J. J. Kokkedee, “Comment on the radiative level shift in the neoclassical radiation theory,” Phys. Rev. A 9, 1468–1469 (1974).
[Crossref]

D. L. Andrews and N. P. Blake, “Quantum electrodynamic study of bimolecular scattering effects in Raman-spectroscopy,” Phys. Rev. A 41, 2547–2565 (1990).
[Crossref]

M. Šindelka, “Derivation of coupled Maxwell-Schrödinger equations describing matter-laser interaction from first principles of quantum electrodynamics,” Phys. Rev. A 81, 033833 (2010).
[Crossref]

K. A. Forbes and A. Salam, “Kramers-Heisenberg dispersion formula for scattering of twisted light,” Phys. Rev. A 100, 053413 (2019).
[Crossref]

K. A. Forbes and D. L. Andrews, “Chiral discrimination in optical binding,” Phys. Rev. A 91, 053824 (2015).
[Crossref]

G. Juzeliūnas, “Microscopic theory of quantization of radiation in molecular dielectrics: normal-mode representation of operators for local and averaged (macroscopic) fields,” Phys. Rev. A 53, 3543–3558 (1996).
[Crossref]

E. A. Power and T. Thirunamachandran, “Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states,” Phys. Rev. A 47, 2539–2551 (1993).
[Crossref]

D. L. Andrews, S. Naguleswaran, and G. E. Stedman, “Phenomenological damping of nonlinear-optical response tensors,” Phys. Rev. A 57, 4925–4929 (1998).
[Crossref]

D. L. Andrews, L. C. Dávila Romero, and G. E. Stedman, “Polarizability and the resonance scattering of light: damping sign issues,” Phys. Rev. A 67, 055801 (2003).
[Crossref]

P. W. Milonni and R. W. Boyd, “Influence of radiative damping on the optical-frequency susceptibility,” Phys. Rev. A 69, 023814 (2004).
[Crossref]

P. R. Berman, R. W. Boyd, and P. W. Milonni, “Polarizability and the optical theorem for a two-level atom with radiative broadening,” Phys. Rev. A 74, 053816 (2006).
[Crossref]

P. W. Milonni, R. Loudon, P. R. Berman, and S. M. Barnett, “Linear polarizabilities of two- and three-level atoms,” Phys. Rev. A 77, 043835 (2008).
[Crossref]

Z. Zheng, P. L. Saldanha, J. R. Rios Leite, and C. Fabre, “Two-photon-two-atom excitation by correlated light states,” Phys. Rev. A 88, 033822 (2013).
[Crossref]

D. S. Bradshaw and D. L. Andrews, “All-optical control of molecular fluorescence,” Phys. Rev. A 81, 013424 (2010).
[Crossref]

K. A. Forbes, D. S. Bradshaw, and D. L. Andrews, “Identifying diamagnetic interactions in scattering and nonlinear optics,” Phys. Rev. A 94, 033837 (2016).
[Crossref]

K. A. Forbes, “Role of magnetic and diamagnetic interactions in molecular optics and scattering,” Phys. Rev. A 97, 053832 (2018).
[Crossref]

S. Y. Buhmann, H. Safari, S. Scheel, and A. Salam, “Body-assisted dispersion potentials of diamagnetic atoms,” Phys. Rev. A 87, 012507 (2013).
[Crossref]

K. A. Forbes and D. L. Andrews, “Spin-orbit interactions and chiroptical effects engaging orbital angular momentum of twisted light in chiral and achiral media,” Phys. Rev. A 99, 023837 (2019).
[Crossref]

M. D. Williams, M. M. Coles, D. S. Bradshaw, and D. L. Andrews, “Direct generation of optical vortices,” Phys. Rev. A 89, 033837 (2014).
[Crossref]

X. Zang and M. T. Lusk, “Twisted molecular excitons as mediators for changing the angular momentum of light,” Phys. Rev. A 96, 013819 (2017).
[Crossref]

Phys. Rev. B (1)

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems,” Phys. Rev. B 94, 085133 (2016).
[Crossref]

Phys. Rev. Lett. (9)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[Crossref]

K. A. Forbes, “Raman optical activity using twisted photons,” Phys. Rev. Lett. 122, 103201 (2019).
[Crossref]

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, “New determination of the fine structure constant from the electron g-value and QED,” Phys. Rev. Lett. 97, 030802 (2006).
[Crossref]

X. Zheng, Y. R. Sun, J. J. Chen, W. Jiang, K. Pachucki, and S. M. Hu, “Laser spectroscopy of the fine-structure splitting in the 23PJ levels of 4He,” Phys. Rev. Lett. 118, 063001 (2017).
[Crossref]

M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002).
[Crossref]

M. D. Williams, M. M. Coles, K. Saadi, D. S. Bradshaw, and D. L. Andrews, “Optical vortex generation from molecular chromophore arrays,” Phys. Rev. Lett. 111, 153603 (2013).
[Crossref]

E. Pedrozo-Peñafiel, R. R. Paiva, F. J. Vivanco, V. S. Bagnato, and K. M. Farias, “Two-photon cooperative absorption in colliding cold Na atoms,” Phys. Rev. Lett. 108, 253004 (2012).
[Crossref]

K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd, “Conical harmonic generation in isotropic materials,” Phys. Rev. Lett. 88, 153901 (2002).
[Crossref]

K. A. Forbes, J. S. Ford, and D. L. Andrews, “Nonlocalized generation of correlated photon pairs in degenerate down-conversion,” Phys. Rev. Lett. 118, 133602 (2017).
[Crossref]

Phys. Rev. Res. (2)

K. A. Forbes and D. L. Andrews, “Enhanced optical activity using the orbital angular momentum of structured light,” Phys. Rev. Res. 1, 033080 (2019).
[Crossref]

R. G. Woolley, “Power-Zienau-Woolley representations of nonrelativistic QED for atoms and molecules,” Phys. Rev. Res. 2, 013206 (2020).
[Crossref]

Phys. Rev. X (1)

J. T. Collins, K. R. Rusimova, D. C. Hooper, H. H. Jeong, L. Ohnoutek, F. Pradaux-Caggiano, T. Verbiest, D. R. Carbery, P. Fischer, and V. K. Valev, “First observation of optical activity in hyper-Rayleigh scattering,” Phys. Rev. X 9, 011024 (2019).
[Crossref]

Phys. Scr. (1)

T. Begzjav and R. Nessler, “On three-dimensional rotational averages of odd-rank tensors,” Phys. Scr. 94, 105504 (2019).
[Crossref]

Proc. IEEE (1)

E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963).
[Crossref]

Proc. Phys. Soc. London (2)

J. S. Avery, “Resonance energy transfer and spontaneous photon emission,” Proc. Phys. Soc. London 88, 1–8 (1966).
[Crossref]

L. Gomberoff and E. A. Power, “The resonance transfer of excitation,” Proc. Phys. Soc. London 88, 281–284 (1966).
[Crossref]

Proc. R. Soc. A (3)

R. G. Woolley, “Gauge invariance in non–relativistic electrodynamics,” Proc. R. Soc. A 456, 1803–1819 (2000).
[Crossref]

R. G. Woolley, “Molecular quantum electrodynamics,” Proc. R. Soc. A 321, 557–572 (1971).
[Crossref]

D. P. Craig, E. A. Power, and T. Thirunamachandran, “The dynamic terms in induced circular dichroism,” Proc. R. Soc. A 348, 19–38 (1976).
[Crossref]

Prog. Biophys. Mol. Biol. (1)

L. D. Barron, L. Hecht, E. W. Blanch, and A. F. Bell, “Solution structure and dynamics of biomolecules from Raman optical activity,” Prog. Biophys. Mol. Biol. 73, 1–49 (2000).
[Crossref]

Rep. Prog. Phys. (2)

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76, 026401 (2013).
[Crossref]

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Rev. Mod. Phys. (2)

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[Crossref]

J. F. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37, 1–18 (1965).
[Crossref]

Superlatt. Microstruct. (1)

D. S. Bradshaw and D. L. Andrews, “All-optical switching between quantum dot nanoarrays,” Superlatt. Microstruct. 47, 308–313 (2010).
[Crossref]

Symmetry (1)

D. L. Andrews, “Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics,” Symmetry 10, 298 (2018).
[Crossref]

Theranostics (1)

N.-T. Chen, K.-C. Tang, M.-F. Chung, S.-H. Cheng, C.-M. Huang, C.-H. Chu, P.-T. Chou, J. S. Souris, C.-T. Chen, C.-Y. Mou, and L.-W. Lo, “Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy,” Theranostics 4, 798–807 (2014).
[Crossref]

Other (41)

C. Schäfer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics,” ACS Photon. (in press).
[Crossref]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th anniversary eds. (Cambridge University, 2010).

P. W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1993).

J. Schwinger, Selected Papers on Quantum Electrodynamics (Dover, 1958).

D. L. Andrews and D. S. Bradshaw, Introduction to Photon Science and Technology (SPIE, 2018).

H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, 1944).

L. I. Schiff, Quantum Mechanics (McGraw-Hill, 1955).

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (CRC Press, 1978).

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1990).

N. Bloembergen, Nonlinear Optics, 4th ed. (World Scientific, 1996).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light (Cambridge University, 2010).

E. A. Power, Introductory Quantum Electrodynamics (American Elsevier, 1965).

R. G. Woolley, “The electrodynamics of atoms and molecules,” in Advances in Chemical Physics (Wiley, 1975), Vol. 33, pp. 153–233.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).

D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (Dover, 1998).

R. Loudon, The Quantum Theory of Light (Oxford University, 2000).

D. L. Andrews and P. Allcock, Optical Harmonics in Molecular Systems (Wiley, 2002).

A. Salam, Molecular Quantum Electrodynamics. Long-Range Intermolecular Interactions (Wiley, 2010).

S. Guérin and H. R. Jauslin, “Control of quantum dynamics by laser pulses: adiabatic Floquet theory,” in Advances in Chemical Physics (Wiley, 2003), Vol. 125, pp. 147–268.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 2002).

G. S. He, Nonlinear Optics and Photonics (Oxford University, 2014).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

J. Weiner and F. Nunes, Light-Matter Interaction. Physics and Engineering at the Nanoscale (Oxford University, 2013).

A. Zangwill, Modern Electrodynamics (Cambridge University, 2013).

C. H. Wilcox, Perturbation Theory and its Applications in Quantum Mechanics (Wiley/Chapman and Hall, 1966).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, 1992), p. 59.

E. Fermi, Nuclear Physics (University of Chicago, 1950).

P. R. Berman, Introductory Quantum Mechanics (Springer, 2018), p. 557.

A. Salam, Non-Relativistic QED Theory of the van der Waals Dispersion Interaction (Springer, 2016).

M. A. Parker, Physics of Optoelectronics (CRC Press, 2005).

D. Marcuse, Principles of Quantum Electronics (Elsevier, 2012).

A. Salam, “Molecular quantum electrodynamics of radiation-induced intermolecular forces,” in Advances in Quantum Chemistry, J. R. Sabin and E. Brandas, eds. (Academic, 2011), pp. 1–34.

D. L. Andrews and D. S. Bradshaw, Optical Nanomanipulation (Morgan & Claypool, 2016).

W. Heitler, The Quantum Theory of Radiation (Dover, 1984).

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2009).

B. W. van der Meer, G. Coker, and S. Y. S. Chen, Resonance Energy Transfer: Theory and Data (VCH, 1994).

D. L. Andrews and A. A. Demidov, Resonance Energy Transfer (Wiley, 1999).

V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley, 2008).

D. L. Andrews and D. S. Bradshaw, “Resonance energy transfer,” in Encyclopedia of Applied Specteoscopy, D. L. Andrews, eds. (Wiley, 2009), pp. 533–554.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Nonforward Rayleigh scattering. Top, two time-ordered diagrams; bottom, their energy level equivalents. In the time-ordered diagrams, the vertical line represents the molecule and wavy lines the input and output photons; 0 and $r$ denote ground and virtual intermediate states, respectively, time progressing upwards. (a) Input photon is annihilated, then output photon is created; (b) output photon is created, then input photon is annihilated. To correctly derive the matrix element, and hence the correct dependence on polarizability, both sequences must be included in the calculations, whether in QED or SCT. Underneath the Feynman diagrams are the corresponding energy level figures, (a) as usually depicted, and (b) its seldom-shown counterpart that lacks conventional interpretation, wrongly indicating negative energies.
Fig. 2.
Fig. 2. Degenerate downconversion, two of several mechanisms involving more than one optical center in the conversion process. Optical input is from the left, output to the right, and wavy lines denote photons. Left-hand case, the ancillary unit is essentially coupled into the process through a static interaction (dashed line), which means that no energy is transferred between the centers. Right-hand case, dynamic coupling, which does involve energy migration, is mediated by a virtual photon (green wavy line). Adapted from Ref. [88].
Fig. 3.
Fig. 3. Time-ordered diagrams for SHG, where $r$ and $s$ denote the virtual intermediate states. (a) Two input photons are annihilated, then an output photon is created; (b) an input photon is annihilated, then an output photon is created, then an input photon is annihilated; (c) an output photon is created, then two input photons are annihilated.
Fig. 4.
Fig. 4. State-sequence diagram for SHG, in which the initial and final states are on the left- and right-hand sides of the diagram, respectively; the four possible intermediate system states are in the center, and the virtual intermediate molecular states are filled circles. Green and purple lines denote photon annihilation and creation, respectively, going from left to right. Note that $\omega \; = \;ck$ and $ \omega^\prime \equiv ck^\prime $; $v$ is the step number.
Fig. 5.
Fig. 5. State-sequence diagram for optical binding, in the center of which 14 possible intermediate states are present. In each box, the left- and right-hand circles are molecules A and B, respectively; an empty circle is an unexcited molecule, and a filled circle denotes a virtual intermediate state; ${\boldsymbol k}$ is a photon relating to the irradiating beam; ${\boldsymbol p}$ is a mediating photon that couples A and B. Represented by a line between the boxes, one of four events are possible: (i) laser photon annihilated at A (green line); (ii) mediating photon created at A (orange line); (iii) mediating photon annihilated at B (blue line); or (iv) laser photon created at B (purple line). The order in which these events arise is the whole basis for the diagram and the 24 channels from initial to final state (from left to right). Each channel has a unique time-ordered diagram equivalent.
Fig. 6.
Fig. 6. Representative Feynman diagrams (in each case one of the full set of distinct time-orderings) depicting the QED mechanisms of (a) RET; (b) optically controlled RET (for all-optical switching); (c) two-photon fluorescence RET; (d) cooperative two-photon absorption; and (e) six-wave mixing. In all but (e), two centers represented as vertical lines are connected by a wavy line denoting virtual photon coupling: all other wavy lines denote real photons.

Tables (3)

Tables Icon

Table 1. Four Possibilities for Matrix Element Evaluationa

Tables Icon

Table 2. System States Decomposed into Molecule and Radiation States, and Their Corresponding Energies for SHGa

Tables Icon

Table 3. Three Channels for Traveling from the Initial State | r 0 1 to the Final State | r 3 1 in the State-Sequence Diagram of Fig. 4

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

H s y s S C T = H m o l + H i n t ;
H s y s Q E D = H m o l + H r a d + H i n t .
H s y s Q E D = ξ H m o l + H r a d + ξ H i n t .
H r a d = k , η { a ( η ) ( k ) a ( η ) ( k ) + 1 2 } c k ,
Γ = ω 3 3 π ε 0 c 3 | μ m 0 | 2 .
H i n t = ε 0 1 μ i ( ξ ) d i ,
d i ( r ) = i k , η ( c k ε 0 2 V ) 1 2 × { e i ( η ) ( k ) a ( η ) ( k ) e i k r e ¯ i ( η ) ( k ) a ( η ) ( k ) e i k r } .
T = T ( 1 ) + T ( 2 ) + T ( 3 ) + T ( 4 ) + ,
T ( 1 ) = H i n t ,
T ( 2 ) = H i n t 1 E i H 0 + i ε H i n t ,
Γ = 2 π | ξ M f i ( ξ ) | 2 ρ f ,
1 = ( N 1 ) 1 q A N 1 r | r ( ξ q ) r ( ξ q ) | .
P i = ε 0 { χ i j ( 1 ) E j + χ i j k ( 2 ) E j E k + χ i j k l ( 3 ) E j E k E l + } ,
E ( t ) = E 0 cos ω t ,
P i ( t ) = ε 0 χ i j ( 1 ) E 0 j cos ω t + ε 0 2 χ i j k ( 2 ) E 0 j E 0 k ( 1 + cos 2 ω t ) + ε 0 4 χ i j k l ( 3 ) E 0 j E 0 k E 0 l ( 3 cos ω t + cos 3 ω t ) + .
M f i = r , s f | H i n t | s s | H i n t | r r | H i n t | i ( E i E r ) ( E i E s ) ,
M f i = i 2 ( ω ε 0 V ) 3 / 2 n e ¯ i ( η ) ( k ) e j ( η ) ( k ) e k ( η ) ( k ) ξ β i j k ( ξ ) ,
β i j k = r , s ( μ i 0 s μ j s r μ k r 0 ( E s 0 2 ω ) ( E r 0 ω ) + μ j 0 s μ i s r μ k r 0 ( E s 0 + ω ) ( E r 0 ω ) + μ j 0 s μ k s r μ i r 0 ( E s 0 + 2 ω ) ( E r 0 + ω ) ) .
I = I ¯ 0 2 g ( 2 ) k 4 N 2 72 π 2 ε 0 3 c | ε i j k e ¯ i ( η ) ( k ) e j ( η ) ( k ) e k ( η ) ( k ) ε λ μ ν β λ μ ν | 2 ,
Δ E = ( n c k ε 0 V ) R e { e i ( η ) ( k ) e ¯ l ( η ) ( k ) α i j A V j k ( k , R ) α k l B e i k R } ,