Abstract

A terahertz photoconductive antenna placed on the back side of a semiconductor slab with and without a compact cylindrical semiconductor microlens on the front side is studied theoretically. The antenna is operated as a photomixer giving narrowband radiation at 1 THz. Radiation patterns and emitted powers are found to oscillate with slab thickness as a consequence of multiple-reflection interference. It is further shown that an antireflection layer on the lens may eliminate these oscillations to a large extent. In the absence of a lens, most of the radiation is trapped inside the semiconductor slab, and the radiation pattern is far from that of a pencil-beam. Both light trapping and radiation patterns are shown to be significantly improved by a very compact lens with a size smaller than a cubic wavelength. The improvements on outcoupling of radiation in a predominantly forward direction versus lens radius and height are mapped out. The calculated outcoupling efficiency of the antenna-lens system takes into account the Purcell effect and radiation trapped in the semiconductor slab. The antenna-lens system is modeled rigorously by using the Green’s function volume integral equation method in a form that exploits cylindrical symmetry.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic photoconductive antennas with rectangular and stepped rods: a theoretical analysis

Mohammadreza Khorshidi and Gholamreza Dadashzadeh
J. Opt. Soc. Am. B 33(12) 2502-2511 (2016)

Guided terahertz pulse reflectometry with double photoconductive antenna

Mingming Pan, Quentin Cassar, Frédéric Fauquet, Georges Humbert, Patrick Mounaix, and Jean-Paul Guillet
Appl. Opt. 59(6) 1641-1647 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription