Abstract

The transfer of optical vortices is studied based on double two-photon processes in a four-level diamond configuration system. A pair of strong fields are applied to prepare atomic coherence, while two weak probe fields are coupled with the other two transitions. When the two-photon resonances are satisfied, the analytical results for the intensities of the probe fields are calculated using perturbation theory and an adiabatic approximation approach. Our results explore whether the orbital angular momentum of an input probe beam or the second control field can be transferred to the generated probe field, and this is verified by numerical simulation. It is interesting that as the intensities of the control fields increase, the propagation of probe beams exhibits oscillation behaviors only when the one-photon detuning is nonzero. Furthermore, we show that the absorption losses are minimized, and the transfer efficiency is enhanced by appropriately modifying the one-photon detuning together with the control-field Rabi frequencies.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable double electromagnetically induced grating with an incoherent pump field

Azar Vafafard and Mostafa Sahrai
J. Opt. Soc. Am. B 37(2) 244-250 (2020)

Orbital angular momentum transfer via spontaneously generated coherence

Zahra Amini Sabegh, Mohammad Mohammadi, Mohammad Ali Maleki, and Mohammad Mahmoudi
J. Opt. Soc. Am. B 36(10) 2757-2764 (2019)

Azimuthal modulation of electromagnetically induced transparency using structured light

Hamid Reza Hamedi, Viaceslav Kudriašov, Julius Ruseckas, and Gediminas Juzeliūnas
Opt. Express 26(22) 28249-28262 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription