Abstract

We examine the traversal aspect of ultracold two-level atoms through a high-quality two-photon mazer with squeezed vacuum and coherent field distributions. Here the net cavity potential is constituted by the coherent addition of multiple barriers and well potentials, which is quite different from the potential offered by a cavity in the Fock or vacuum state. For squeezed vacuum and coherent field distributions, one gets different phase times ($ {t_{ph}} $) for different modes of the distribution, which are then averaged by taking the weighted mean on the $ {t_{ph}} $ over the n-dependent transmission probability. It is found that the nature, intensity of the field, and injected coherence of the incident atoms have a decisive role in controlling peak values and sub- and superclassical traversals of the tunneling atoms. For two of the system’s dressed states ($ | {{\Phi _{b0}}}\rangle $, $ | {{\Phi _{b1}}}\rangle $), the cavity offers reflectionless transmission, as the atoms experience zero potential due to the dark state formation. Moreover, for a somewhat intense cavity field, mazer action (scattering-type behavior) may be obtained for an extended range of energies due to increased cavity potential in the course of atom–cavity interaction.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon atomic transitions with a squeezed cavity field and Stark shift

Tahira Nasreen and M. S. K. Razmi
J. Opt. Soc. Am. B 8(11) 2303-2310 (1991)

Field and atomic dipole squeezing and emission spectra with two atoms in the cavity

Tariq Maqbool and M. S. K. Razmi
J. Opt. Soc. Am. B 10(1) 112-121 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription