Abstract

We present an alternative scheme for generating the asymmetric steering of microwave photons via using a superconducting circuit system, where a single $ \Delta $-type three-level fluxoninum qubit interacts dispersively with three superconducting resonators. The nondegenerate parametric down-conversion occurs among three microwave modes by adiabatically eliminating the atomic variables of the artificial atom, which is responsible for the existence of quantum correlation. Furthermore, the asymmetric steering is easily established with the help of coherent driving of the resonators, and its directionality can be controlled by adjusting the driving strengths to two modes among three modes without additional noise. The scheme we present is based on general quantum operations under conditions of decoherence and nonideal coupling efficiency, and the asymmetric steering of microwave photons is a useful resource for the construction of long-distance quantum communication networks in solid-state systems.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-way Einstein-Podolsky-Rosen steering via atomic coherence

Wenxue Zhong, Guangling Cheng, and Xiangming Hu
Opt. Express 25(10) 11584-11597 (2017)

Asymmetric Einstein–Podolsky–Rosen steering manipulating among multipartite entangled states

Shuqin Zhai, Nan Yuan, and Kui Liu
J. Opt. Soc. Am. B 36(10) 2920-2926 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription