Abstract

A theoretical analysis of the characteristics of the hybrid surface plasmon of a monolayer graphene-wrapped metamaterial-filled cylindrical waveguide is performed. The dispersion relations for different configurations of metamaterials [double positive (DPS)–graphene–DPS, DPS–graphene–double negative (DNG), DNG–graphene–DPS, and DNG–graphene–DNG] are simulated by solving Maxwell’s equations for cylindrical symmetry and implementing impedance boundary conditions at the interface. The electromagnetic response of graphene is modeled using Kubo’s formalism. The influence of the geometrical parameters of the waveguide structure, the chemical potential of graphene and the parameters of partnering materials on the dispersion curve, the effective mode index, and the phase velocity is presented. It is observed that the existence of graphene along with metamaterials provides better control and tuning of the propagation of the surface waves. The backward surface waves, forward surface waves, and slow surface waves for the fundamental mode are studied for different waveguide configurations. The results are found to be in accordance with the published literature. These results may have potential applications in tuning surface waves, waveguide technology, modulators, backward-wave amplifiers, traveling-wave masers, frequency selectors, circular polarizers, switching and phase compensation, and graphene-based slow-light devices.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon modes of circular cylindrical double-layer graphene

Tao Zhao, Min Hu, Renbin Zhong, Xiaoxing Chen, Ping Zhang, Sen Gong, Chao Zhang, and Shenggang Liu
Opt. Express 24(18) 20461-20471 (2016)

Coupled plasmonic graphene wires: theoretical study including complex frequencies and field distributions of bright and dark surface plasmons

Mauro Cuevas, Shiva Hayati Raad, and C. J. Zapata-Rodríguez
J. Opt. Soc. Am. B 37(10) 3084-3093 (2020)

Characteristics of light–plasmon coupling on chiral–graphene interface

M. Zeshan Yaqoob, A. Ghaffar, Majeed Alkanhal, and Sajjad Ur Rehman
J. Opt. Soc. Am. B 36(1) 90-95 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
    [Crossref]
  4. J. Polo, T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Newnes, 2013).
  5. B. Ghosh and A. B. Kakade, “Guided modes in a metamaterial-filled circular waveguide,” Electromagnetics 32, 465–480 (2012).
    [Crossref]
  6. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref]
  7. M. Abadla and S. A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal,” Optik–Int. J. Light Electron Opt. 125, 1401–1405 (2014).
    [Crossref]
  8. A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).
    [Crossref]
  9. K. Y. Kim, “Fundamental guided electromagnetic dispersion characteristics in lossless dispersive metamaterial clad circular air-hole waveguides,” J. Opt. A 9, 1062 (2007).
    [Crossref]
  10. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
    [Crossref]
  11. M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, “Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure,” Sci. Rep. 8, 18029 (2018).
    [Crossref]
  12. Q. Ren, J. You, and N. Panoiu, “Large enhancement of the effective second-order nonlinearity in graphene metasurfaces,” Phys. Rev. B 99, 205404 (2019).
    [Crossref]
  13. T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
    [Crossref]
  14. T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
    [Crossref]
  15. K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and nonlinear THz properties of graphene,” Int. J. Terahertz Sci. Technol. 6, 223–233 (2013).
  16. M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21, 12592–12603 (2013).
    [Crossref]
  17. D. Teng, K. Wang, and Z. Li, “Graphene-coated nanowire waveguides and their applications,” Nanomaterials 10, 229 (2020).
    [Crossref]
  18. D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
    [Crossref]
  19. T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91, 125414 (2015).
    [Crossref]
  20. Y. Gao, G. Ren, B. Zhu, J. Wang, and S. Jian, “Single-mode graphene-coated nanowire plasmonic waveguide,” Opt. Lett. 39, 5909–5912 (2014).
    [Crossref]
  21. D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
    [Crossref]
  22. D. Teng, K. Wang, Q. Huan, W. Chen, and Z. Li, “High-performance light transmission based on graphene plasmonic waveguides,” J. Mater. Chem. C 8, 6832–6838 (2020).
    [Crossref]
  23. D. Teng, K. Wang, Z. Li, and Y. Zhao, “Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range,” Opt. Express 27, 12458–12469 (2019).
    [Crossref]
  24. Y. Yuan, J. Yao, and W. Xu, “Terahertz photonic states in semiconductor–graphene cylinder structures,” Opt. Lett. 37, 960–962 (2012).
    [Crossref]
  25. Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, “Analytical model for plasmon modes in graphene-coated nanowire,” Opt. Express 22, 24322–24331 (2014).
    [Crossref]
  26. R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
    [Crossref]
  27. X. Y. He, J. Tao, and B. Meng, “Analysis of graphene TE surface plasmons in the terahertz regime,” Nanotechnology 24, 345203 (2013).
    [Crossref]

2020 (4)

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

D. Teng, K. Wang, and Z. Li, “Graphene-coated nanowire waveguides and their applications,” Nanomaterials 10, 229 (2020).
[Crossref]

D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
[Crossref]

D. Teng, K. Wang, Q. Huan, W. Chen, and Z. Li, “High-performance light transmission based on graphene plasmonic waveguides,” J. Mater. Chem. C 8, 6832–6838 (2020).
[Crossref]

2019 (2)

D. Teng, K. Wang, Z. Li, and Y. Zhao, “Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range,” Opt. Express 27, 12458–12469 (2019).
[Crossref]

Q. Ren, J. You, and N. Panoiu, “Large enhancement of the effective second-order nonlinearity in graphene metasurfaces,” Phys. Rev. B 99, 205404 (2019).
[Crossref]

2018 (1)

M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, “Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure,” Sci. Rep. 8, 18029 (2018).
[Crossref]

2017 (1)

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
[Crossref]

2016 (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

2015 (3)

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91, 125414 (2015).
[Crossref]

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

2014 (3)

2013 (3)

K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and nonlinear THz properties of graphene,” Int. J. Terahertz Sci. Technol. 6, 223–233 (2013).

M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21, 12592–12603 (2013).
[Crossref]

X. Y. He, J. Tao, and B. Meng, “Analysis of graphene TE surface plasmons in the terahertz regime,” Nanotechnology 24, 345203 (2013).
[Crossref]

2012 (3)

Y. Yuan, J. Yao, and W. Xu, “Terahertz photonic states in semiconductor–graphene cylinder structures,” Opt. Lett. 37, 960–962 (2012).
[Crossref]

B. Ghosh and A. B. Kakade, “Guided modes in a metamaterial-filled circular waveguide,” Electromagnetics 32, 465–480 (2012).
[Crossref]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

2010 (1)

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

2007 (1)

K. Y. Kim, “Fundamental guided electromagnetic dispersion characteristics in lossless dispersive metamaterial clad circular air-hole waveguides,” J. Opt. A 9, 1062 (2007).
[Crossref]

2004 (1)

A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Abadla, M.

M. Abadla and S. A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal,” Optik–Int. J. Light Electron Opt. 125, 1401–1405 (2014).
[Crossref]

Alkanhal, M.

M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, “Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure,” Sci. Rep. 8, 18029 (2018).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).
[Crossref]

Arezoomandan, S.

K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and nonlinear THz properties of graphene,” Int. J. Terahertz Sci. Technol. 6, 223–233 (2013).

Bagci, H.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Chen, H.-S.

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Chen, W.

D. Teng, K. Wang, Q. Huan, W. Chen, and Z. Li, “High-performance light transmission based on graphene plasmonic waveguides,” J. Mater. Chem. C 8, 6832–6838 (2020).
[Crossref]

Chen, X.

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Christensen, T.

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91, 125414 (2015).
[Crossref]

Chu, H. S.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Efetov, D. K.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).
[Crossref]

Farhat, M.

Gan, C. H.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

Gao, Y.

Ghaffar, A.

M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, “Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure,” Sci. Rep. 8, 18029 (2018).
[Crossref]

Ghosh, B.

B. Ghosh and A. B. Kakade, “Guided modes in a metamaterial-filled circular waveguide,” Electromagnetics 32, 465–480 (2012).
[Crossref]

Gong, S.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
[Crossref]

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Gu, J.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Guo, J.

D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
[Crossref]

Han, J.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Hao, R.

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

He, X. Y.

X. Y. He, J. Tao, and B. Meng, “Analysis of graphene TE surface plasmons in the terahertz regime,” Nanotechnology 24, 345203 (2013).
[Crossref]

Hu, M.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
[Crossref]

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Huan, Q.

D. Teng, K. Wang, Q. Huan, W. Chen, and Z. Li, “High-performance light transmission based on graphene plasmonic waveguides,” J. Mater. Chem. C 8, 6832–6838 (2020).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jauho, A.-P.

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91, 125414 (2015).
[Crossref]

Jian, S.

Jin, J.-M.

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Kakade, A. B.

B. Ghosh and A. B. Kakade, “Guided modes in a metamaterial-filled circular waveguide,” Electromagnetics 32, 465–480 (2012).
[Crossref]

Kim, K. Y.

K. Y. Kim, “Fundamental guided electromagnetic dispersion characteristics in lossless dispersive metamaterial clad circular air-hole waveguides,” J. Opt. A 9, 1062 (2007).
[Crossref]

Kim, P.

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

Lakhtakia, A.

J. Polo, T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Newnes, 2013).

Li, E. P.

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

Li, E.-P.

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Li, Y.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Li, Z.

D. Teng, K. Wang, and Z. Li, “Graphene-coated nanowire waveguides and their applications,” Nanomaterials 10, 229 (2020).
[Crossref]

D. Teng, K. Wang, Q. Huan, W. Chen, and Z. Li, “High-performance light transmission based on graphene plasmonic waveguides,” J. Mater. Chem. C 8, 6832–6838 (2020).
[Crossref]

D. Teng, K. Wang, Z. Li, and Y. Zhao, “Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range,” Opt. Express 27, 12458–12469 (2019).
[Crossref]

Lian, Y.

Liu, D.

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Liu, H.

Liu, S.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
[Crossref]

Ma, W.

D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
[Crossref]

Mackay, T.

J. Polo, T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Newnes, 2013).

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Meng, B.

X. Y. He, J. Tao, and B. Meng, “Analysis of graphene TE surface plasmons in the terahertz regime,” Nanotechnology 24, 345203 (2013).
[Crossref]

Mortensen, N. A.

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91, 125414 (2015).
[Crossref]

Ouyang, C.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Panoiu, N.

Q. Ren, J. You, and N. Panoiu, “Large enhancement of the effective second-order nonlinearity in graphene metasurfaces,” Phys. Rev. B 99, 205404 (2019).
[Crossref]

Peng, X.-L.

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Polo, J.

J. Polo, T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Newnes, 2013).

Razzaz, F.

M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, “Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure,” Sci. Rep. 8, 18029 (2018).
[Crossref]

Ren, G.

Ren, Q.

Q. Ren, J. You, and N. Panoiu, “Large enhancement of the effective second-order nonlinearity in graphene metasurfaces,” Phys. Rev. B 99, 205404 (2019).
[Crossref]

Rockstuhl, C.

Sensale-Rodriguez, B.

K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and nonlinear THz properties of graphene,” Int. J. Terahertz Sci. Technol. 6, 223–233 (2013).

Tan, Y.

D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
[Crossref]

Tao, J.

X. Y. He, J. Tao, and B. Meng, “Analysis of graphene TE surface plasmons in the terahertz regime,” Nanotechnology 24, 345203 (2013).
[Crossref]

Taya, S. A.

M. Abadla and S. A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal,” Optik–Int. J. Light Electron Opt. 125, 1401–1405 (2014).
[Crossref]

Teng, D.

D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
[Crossref]

D. Teng, K. Wang, and Z. Li, “Graphene-coated nanowire waveguides and their applications,” Nanomaterials 10, 229 (2020).
[Crossref]

D. Teng, K. Wang, Q. Huan, W. Chen, and Z. Li, “High-performance light transmission based on graphene plasmonic waveguides,” J. Mater. Chem. C 8, 6832–6838 (2020).
[Crossref]

D. Teng, K. Wang, Z. Li, and Y. Zhao, “Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range,” Opt. Express 27, 12458–12469 (2019).
[Crossref]

Tian, Z.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

ur Rehman, S.

M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, “Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure,” Sci. Rep. 8, 18029 (2018).
[Crossref]

Wang, J.

Wang, K.

D. Teng, K. Wang, Q. Huan, W. Chen, and Z. Li, “High-performance light transmission based on graphene plasmonic waveguides,” J. Mater. Chem. C 8, 6832–6838 (2020).
[Crossref]

D. Teng, K. Wang, and Z. Li, “Graphene-coated nanowire waveguides and their applications,” Nanomaterials 10, 229 (2020).
[Crossref]

D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
[Crossref]

D. Teng, K. Wang, Z. Li, and Y. Zhao, “Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range,” Opt. Express 27, 12458–12469 (2019).
[Crossref]

Wang, X.

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Wu, P.

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Wubs, M.

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91, 125414 (2015).
[Crossref]

Xia, L.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Xu, Q.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Xu, W.

Xu, Y.

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Yang, K.

K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and nonlinear THz properties of graphene,” Int. J. Terahertz Sci. Technol. 6, 223–233 (2013).

Yang, Y.

D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
[Crossref]

Yao, J.

Yaqoob, M.

M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, “Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure,” Sci. Rep. 8, 18029 (2018).
[Crossref]

You, J.

Q. Ren, J. You, and N. Panoiu, “Large enhancement of the effective second-order nonlinearity in graphene metasurfaces,” Phys. Rev. B 99, 205404 (2019).
[Crossref]

Yuan, Y.

Zhang, C.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
[Crossref]

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Zhang, P.

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Zhang, W.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Zhang, X.

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Zhang, X.-M.

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Zhao, T.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
[Crossref]

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Zhao, Y.

Zhong, R.

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
[Crossref]

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

Zhu, B.

Adv. Photon. (1)

X. Zhang, Q. Xu, L. Xia, Y. Li, J. Gu, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmonic waves: a review,” Adv. Photon. 2, 014001 (2020).
[Crossref]

Appl. Phys. Lett. (1)

T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 110, 231102 (2017).
[Crossref]

Electromagnetics (1)

B. Ghosh and A. B. Kakade, “Guided modes in a metamaterial-filled circular waveguide,” Electromagnetics 32, 465–480 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

A. Alù and N. Engheta, “Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers,” IEEE Trans. Microwave Theory Tech. 52, 199–210 (2004).
[Crossref]

Int. J. Terahertz Sci. Technol. (1)

K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, “The linear and nonlinear THz properties of graphene,” Int. J. Terahertz Sci. Technol. 6, 223–233 (2013).

J. Mater. Chem. C (1)

D. Teng, K. Wang, Q. Huan, W. Chen, and Z. Li, “High-performance light transmission based on graphene plasmonic waveguides,” J. Mater. Chem. C 8, 6832–6838 (2020).
[Crossref]

J. Opt. A (1)

K. Y. Kim, “Fundamental guided electromagnetic dispersion characteristics in lossless dispersive metamaterial clad circular air-hole waveguides,” J. Opt. A 9, 1062 (2007).
[Crossref]

Nanomaterials (1)

D. Teng, K. Wang, and Z. Li, “Graphene-coated nanowire waveguides and their applications,” Nanomaterials 10, 229 (2020).
[Crossref]

Nanotechnology (1)

X. Y. He, J. Tao, and B. Meng, “Analysis of graphene TE surface plasmons in the terahertz regime,” Nanotechnology 24, 345203 (2013).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optik–Int. J. Light Electron Opt. (1)

M. Abadla and S. A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal,” Optik–Int. J. Light Electron Opt. 125, 1401–1405 (2014).
[Crossref]

Phys. Rev. B (3)

Q. Ren, J. You, and N. Panoiu, “Large enhancement of the effective second-order nonlinearity in graphene metasurfaces,” Phys. Rev. B 99, 205404 (2019).
[Crossref]

C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
[Crossref]

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91, 125414 (2015).
[Crossref]

Phys. Rev. Lett. (1)

D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

Results Phys. (1)

D. Teng, Y. Yang, J. Guo, W. Ma, Y. Tan, and K. Wang, “Efficient guiding mid-infrared waves with graphene-coated nanowire based plasmon waveguides,” Results Phys. 17, 103169 (2020).
[Crossref]

Sci. Rep. (3)

T. Zhao, S. Gong, M. Hu, R. Zhong, D. Liu, X. Chen, P. Zhang, X. Wang, C. Zhang, and P. Wu, “Coherent and tunable terahertz radiation from graphene surface plasmon polarirons excited by cyclotron electron beam,” Sci. Rep. 5, 16059 (2015).
[Crossref]

M. Yaqoob, A. Ghaffar, M. Alkanhal, S. ur Rehman, and F. Razzaz, “Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure,” Sci. Rep. 8, 18029 (2018).
[Crossref]

R. Hao, X.-L. Peng, E.-P. Li, Y. Xu, J.-M. Jin, X.-M. Zhang, and H.-S. Chen, “Improved slow light capacity in graphene-based waveguide,” Sci. Rep. 5, 15335 (2015).
[Crossref]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

J. Polo, T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Newnes, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Metamaterial–graphene–metamaterial-based cylindrical structure.
Fig. 2.
Fig. 2. Normalized field distribution for graphene-layered metamaterial-filled circular waveguide as function of radius with ${T} = {300}\;{\rm k}$, $\tau = {0.5}\;{\rm ps}$, and ${{\mu}_c} = {0.5}\;{\rm eV}$. (a) DNG–graphene–DNG. (b) DPS–graphene–DPS.
Fig. 3.
Fig. 3. Comparison of dispersion curve of graphene plasmon fundamental mode in published literature [25] and dispersion curve of graphene plasmon fundamental mode in present work.
Fig. 4.
Fig. 4. Dispersion curves with ${R} = {100}\;{\rm nm}$, ${T} = {300}\;{\rm k}$, $\tau = {0.5}\;{\rm ps}$, and ${{\mu}_c} = {0.5}\;{\rm eV}$ for (a) DPS–graphene–DPS, (b) DNG–graphene–DNG, (c) DPS–graphene–DNG, and (d) DNG–graphene–DPS.
Fig. 5.
Fig. 5. Effect of chemical potential with ${T} = {300}\;{\rm k}$, $\tau = {0.5}\;{\rm ps}$, and ${R} = {100}\;{\rm nm}$ on dispersion curve of (a) DPS–graphene–DPS, (b) DNG–graphene–DNG, (c) DPS–graphene–DNG, and (d) DNG–graphene–DPS.
Fig. 6.
Fig. 6. Effect of radius with ${T} = {300}\;{\rm k}$, $\tau= {0.5}\;{\rm ps}$, and ${{\mu}_c} = {0.5}\;{\rm eV}$ for (a) DPS–graphene–DPS, (b) DNG–graphene–DNG, (c) DPS–graphene–DNG, and (d) DNG–graphene–DPS.
Fig. 7.
Fig. 7. Effect of permittivity of metamaterial filled in core on dispersion curve for (a) DPS–graphene–DPS, (b) DNG–graphene–DNG, (c) DPS–graphene–DNG, and (d) DNG–graphene–DPS.
Fig. 8.
Fig. 8. Effect of permittivity of surrounding environment with ${ R} = {100}\;{\rm nm}$, ${T} = {300}\;{\rm k}$, $\tau = {0.5}\;{\rm ps}$, and ${{\mu}_c} = {0.5}\;{\rm eV}$ on dispersion curve for (a) DPS–graphene–DPS, (b) DNG–graphene–DNG, (c) DPS–graphene–DNG, and (d) DNG–graphene–DPS.
Fig. 9.
Fig. 9. Effective mode index as a function of permittivity at frequency of 25 THz and ${R} = {100}\;{\rm nm}$, ${T} = {300}\;{\rm k}$, $\tau = {0.5}\;{\rm ps}$, and ${{\mu}_c} = {0.5}\;{\rm eV}$ for (a) DPS–graphene–DPS, (b) DNG–graphene–DNG, (c) DPS–graphene–DNG, and (d) DNG–graphene–DPS.
Fig. 10.
Fig. 10. Effective mode index as a function of permittivity of waveguide for DPS–graphene–DNG configuration at frequency of 25 THz and ${R} = {100}\;{\rm nm}$, ${T} = {300}\;{\rm k}$, $\tau = {0.5}\;{\rm ps}$, and ${{\mu}_c} = {0.5}\;{\rm eV}$.
Fig. 11.
Fig. 11. Phase speed ($\omega$) as a function of frequency under different values of chemical potential of graphene with ${R} = {100}\;{\rm nm}$, ${T} = {300}\;{\rm k}$, and $\tau = {0.5}\;{\rm ps}$ for (a) DPS–graphene–DPS, (b) DNG–graphene–DNG, (c) DPS–graphene–DNG, and (d) DNG–graphene–DPS.
Fig. 12.
Fig. 12. Phase speed ($\omega$) as a function of frequency under different values of radius of waveguide with ${{\mu}_c} = {0.5}\;{\rm eV}$, ${T} = {300}\;{\rm k},$ and $\tau = {0.5}\;{\rm ps}$ for (a) DPS–graphene–DPS, (b) DNG–graphene–DNG, (c) DPS–graphene–DNG, and (d) DNG–graphene–DPS.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E z 1 = A m I m ( γ 1 ρ ) exp ( j m φ ) exp ( j β z ) ,
E φ 1 = j γ 1 2 { j m β ρ A m I m ( γ 1 ρ ) ω μ 1 B m γ 1 I m ( γ 1 ρ ) } × exp ( j m φ ) exp ( j β z ) ,
E ρ 1 = j γ 1 2 { β A m γ 1 I m ( γ 1 ρ ) + j m ω μ 1 ρ B m I m ( γ 1 ρ ) } × exp ( j m φ ) exp ( j β z ) ,
H z 1 = B m I m ( γ 1 ρ ) exp ( j m φ ) exp ( j β z ) ,
H φ 1 = j γ 1 2 { j m β ρ B m I m ( γ 1 ρ ) + ω ε 1 A m γ 1 I m ( γ 1 ρ ) } × exp ( j m φ ) exp ( j β z ) ,
H ρ 1 = j γ 1 2 { β B m γ 1 I m ( γ 1 ρ ) j m ω ε 1 ρ A m I m ( γ 1 ρ ) } × exp ( j m φ ) exp ( j β z ) ,
E z 2 = C m K m ( γ 2 ρ ) exp ( j m φ ) exp ( j β z ) ,
E φ 2 = j γ 2 2 { j m β ρ C m K m ( γ 2 ρ ) ω μ 2 D m γ 2 K m ( γ 2 ρ ) } × exp ( j m φ ) exp ( j β z ) ,
E ρ 2 = j γ 2 2 { β C m γ 2 K m ( γ 2 ρ ) + j m ω μ 2 ρ D m K m ( γ 2 ρ ) } × exp ( j m φ ) exp ( j β z ) ,
H z 2 = D m K m ( γ 2 ρ ) exp ( j m φ ) exp ( j β z ) ,
H φ 2 = j γ 2 2 { j m β ρ D m K m ( γ 2 ρ ) + ω ε 2 C m γ 2 K m ( γ 2 ρ ) } × exp ( j m φ ) exp ( j β z ) ,
H ρ 2 = j γ 2 2 { β D m γ 2 K m ( γ 2 ρ ) j m ω ε 2 ρ C m K m ( γ 2 ρ ) } × exp ( j m φ ) exp ( j β z ) ,
σ ( g ) ( ω , μ ( c ) , τ , T ) = j e 2 K ( B ) T π 2 ( ω + j τ ) ( μ K B T + 2 L o g [ e μ K B T + 1 ] ) + j e 2 4 π 2 L o g [ 2 | μ | ( ω + j τ ) 2 | μ | + ( ω + j τ ) ] .
E z 1 = E z 2 , E φ 1 = E φ 2 , H z 2 H z 1 = σ g E φ 1 , a n d H φ 2 H φ 1 = σ g E z 1 .
| I m ( γ 1 R ) 0 K m ( γ 2 R ) 0 j m β γ 1 2 R I m ( γ 1 R ) ω μ 1 γ 1 I m ( γ 1 R ) j m β γ 2 2 R K m ( γ 2 R ) ω μ 2 γ 2 K m ( γ 2 R ) j ω ϵ 1 γ 2 I m ( γ 1 R ) σ g I m ( γ 1 R ) m β γ 1 2 R I m ( γ 1 R ) j ω ϵ 2 γ 2 K m ( γ 2 R ) m β γ 2 2 R K m ( γ 2 R ) σ g m β γ 1 2 R I m ( γ 1 R ) I m ( γ 1 R ) σ g j ω μ 1 γ 1 I m ( γ 1 R ) 0 K m ( γ 2 R ) | = 0.
ε 2 K 0 ( γ 2 R ) k 2 K 0 ( γ 2 R ) ε 1 I 0 ( γ 1 R ) k 1 I 0 ( γ 1 R ) = j σ g ω ,

Metrics