Abstract

In this work, a gas sensor based on the plasmonic double-layer graphene nanograting (GNG) structure with an enhanced figure of merit (FoM) is presented in the near-infrared region. This structure includes double periodic graphene nanoribbon arrays, separated by a dielectric. The wavelength interrogation method is employed to accurately investigate the behavior of the proposed structure for various physical and geometrical parameters, including the array pitch, graphene nanoribbon width, refractive index of the intermediate dielectric between the GNGs, and the chemical potential of the graphene. A sharp dip is achieved by the guided-mode resonance between the two GNG layers, due to their near-field coupling. For the optimized design, obtained sensitivity and FoM are 430.91 nm/RIU and ${174.68}\;{{\rm{RIU}}^{- 1}}$, respectively, when the finite-element method is used for the simulations. The high FoM is a result of the field enhancement at the edges of the graphene nanoribbons, as well as the narrow resonance linewidth achieved by the sharp transmission dip. In addition to the high performance and FoM, the structure is robust to the misalignment of two GNG layers, offering a solution for practical gas sensing applications. To the best of our knowledge, the proposed GNG-based structure enjoys a boosted FoM compared to the previously proposed integrated gas sensors, as well as a practically feasible design for fabrication.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications

Mehrnoosh Salemizadeh, Fatemeh Fouladi Mahani, and Arash Mokhtari
J. Opt. Soc. Am. B 36(10) 2863-2870 (2019)

Hybrid metal-graphene plasmonic sensor for multi-spectral sensing in both near- and mid-infrared ranges

Qilin Hong, Jie Luo, Chunchao Wen, Jianfa Zhang, Zhihong Zhu, Shiqiao Qin, and Xiaodong Yuan
Opt. Express 27(24) 35914-35924 (2019)

Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength

M. Tahmasebpour, M. Bahrami, and A. Asgari
Appl. Opt. 53(7) 1449-1458 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. D. Gaspera and A. Martucci, “Sol-gel thin films for plasmonic gas sensors,” Sensors 15, 16910–16928 (2015).
    [Crossref]
  2. M. Manera and R. Rella, “Improved gas sensing performances in SPR sensors by transducers activation,” Sens. Actuators B 179, 175–186 (2013).
    [Crossref]
  3. A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B 237, 969–973 (2016).
    [Crossref]
  4. B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
    [Crossref]
  5. Y. Zhang, J. Liu, and C. Zhu, “Novel gas ionization sensors using carbon nanotubes,” Sens. Lett. 8, 219–227 (2010).
    [Crossref]
  6. H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
    [Crossref]
  7. Z. Cheng and K. Goda, “Design of waveguide-integrated graphene devices for photonic gas sensing,” Nanotechnology 27, 505206 (2016).
    [Crossref]
  8. A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171–174 (2003).
    [Crossref]
  9. S. Darbari, Y. Abdi, and S. Mohajerzadeh, “A novel carbon-nanotube gas sensor based on field ionization from branched nanostructures,” Eur. Phys. J. 52, 30602 (2010).
    [Crossref]
  10. C.-H. Lin, S.-J. Chang, and T.-J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3, 095002 (2016).
    [Crossref]
  11. S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
    [Crossref]
  12. Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
    [Crossref]
  13. A. Purkayastha, T. Srivastava, and R. Jha, “Ultrasensitive THz–plasmonics gaseous sensor using doped graphene,” Sens. Actuators B 227, 291–295 (2016).
    [Crossref]
  14. T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48, 334 (2016).
    [Crossref]
  15. A. K. Mishra and S. K. Mishra, “MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain,” J. Phys. Condens. Matter 29, 145001 (2017).
    [Crossref]
  16. S. Cai, Á. González-Vila, X. Zhang, T. Guo, and C. Caucheteur, “Palladium-coated plasmonic optical fiber gratings for hydrogen detection,” Opt. Lett. 44, 4483–4486 (2019).
    [Crossref]
  17. Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43, 2308–2311 (2018).
    [Crossref]
  18. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
    [Crossref]
  19. M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
    [Crossref]
  20. M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
    [Crossref]
  21. E. Rafiee, R. Negahdari, and F. Emami, “Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy,” Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019).
    [Crossref]
  22. A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
    [Crossref]
  23. X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, “Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons,” AIP Adv. 6, 085301 (2016).
    [Crossref]
  24. B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
    [Crossref]
  25. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B 54, 3–15 (1999).
    [Crossref]
  26. A. J. Baeumner, G. Gauglitz, and J. Homola, Advances in Direct Optical Detection (Springer, 2020).
  27. G. Gauglitz and J. Homola, Direct Optical Detection (Springer, 2015).
  28. M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 29984 (2016).
    [Crossref]
  29. M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications,” J. Opt. Soc. Am. B 36, 2863–2870 (2019).
    [Crossref]
  30. M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors,” J. Opt. Soc. Am. B 36, 786–793 (2019).
    [Crossref]
  31. G. A. C. Tellez, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13, 2541–2546 (2013).
    [Crossref]
  32. C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
    [Crossref]
  33. C.-T. Li, H.-F. Chen, I.-W. Un, H.-C. Lee, and T.-J. Yen, “Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection,” Opt. Express 20, 3250–3260 (2012).
    [Crossref]
  34. A. Kruchinin and Y. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor,” Sens. Actuators B 30, 77–80 (1996).
    [Crossref]
  35. X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
    [Crossref]
  36. Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.
  37. W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
    [Crossref]
  38. O. Kotov, M. Kol’chenko, and Y. E. Lozovik, “Ultrahigh refractive index sensitivity of TE-polarized electromagnetic waves in graphene at the interface between two dielectric media,” Opt. Express 21, 13533–13546 (2013).
    [Crossref]
  39. Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.
  40. A. K. Pandey and A. K. Sharma, “Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer,” Photon. Nanostruct. Fundam. Appl. 28, 94–99 (2018).
    [Crossref]
  41. C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
    [Crossref]
  42. P. G. Hermannsson, “Design and use of guided mode resonance filters for refractive index sensing,” Ph.D. dissertation (Technical University of Denmark, 2015).
  43. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A: 18, 1912–1928 (2001).
    [Crossref]
  44. H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
    [Crossref]
  45. Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided mode resonance sensors with optimized figure of merit,” Nanomaterial 9, 837 (2019).
    [Crossref]
  46. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1999).
  47. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
    [Crossref]
  48. S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5, 9615–9619 (2013).
    [Crossref]
  49. A. Vakil, “Transformation optics using graphene: one-atom-thick optical devices based on graphene,” Ph.D. dissertation (University of Pennsylvania, 2012).
  50. X. Shi and S. A. Boden, “Scanning helium ion beam lithography,” in Frontiers of Nanoscience (Elsevier, 2016), pp. 563–594.
  51. P. A. D. Gonçalves and N. M. Peres, An Introduction to Graphene Plasmonics (World Scientific, 2016).
  52. A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
    [Crossref]
  53. M. Abbasi-Firouzjah and B. Shokri, “Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature,” Thin Solid Films 577, 67–73 (2015).
    [Crossref]
  54. A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sens. Actuators B 17, 35–40 (1993).
    [Crossref]
  55. M. T. Chorsi and H. T. Chorsi, “Graphene plasmonic nanogratings for biomolecular sensing in liquid,” Appl. Phys. A 123, 757 (2017).
    [Crossref]
  56. D. Cullen, R. Brown, and C. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987).
    [Crossref]
  57. S. Asgari and N. Granpayeh, “Tunable plasmonically induced reflection in graphene-coupled side resonators and its application,” J. Nanophoton. 11, 026012 (2017).
    [Crossref]

2019 (8)

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

S. Cai, Á. González-Vila, X. Zhang, T. Guo, and C. Caucheteur, “Palladium-coated plasmonic optical fiber gratings for hydrogen detection,” Opt. Lett. 44, 4483–4486 (2019).
[Crossref]

E. Rafiee, R. Negahdari, and F. Emami, “Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy,” Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019).
[Crossref]

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Tunable mid-infrared graphene-titanium nitride plasmonic absorber for chemical sensing applications,” J. Opt. Soc. Am. B 36, 2863–2870 (2019).
[Crossref]

M. Salemizadeh, F. F. Mahani, and A. Mokhtari, “Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors,” J. Opt. Soc. Am. B 36, 786–793 (2019).
[Crossref]

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided mode resonance sensors with optimized figure of merit,” Nanomaterial 9, 837 (2019).
[Crossref]

2018 (6)

W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
[Crossref]

A. K. Pandey and A. K. Sharma, “Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer,” Photon. Nanostruct. Fundam. Appl. 28, 94–99 (2018).
[Crossref]

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
[Crossref]

Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43, 2308–2311 (2018).
[Crossref]

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
[Crossref]

2017 (4)

A. K. Mishra and S. K. Mishra, “MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain,” J. Phys. Condens. Matter 29, 145001 (2017).
[Crossref]

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

M. T. Chorsi and H. T. Chorsi, “Graphene plasmonic nanogratings for biomolecular sensing in liquid,” Appl. Phys. A 123, 757 (2017).
[Crossref]

S. Asgari and N. Granpayeh, “Tunable plasmonically induced reflection in graphene-coupled side resonators and its application,” J. Nanophoton. 11, 026012 (2017).
[Crossref]

2016 (9)

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, “Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons,” AIP Adv. 6, 085301 (2016).
[Crossref]

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 29984 (2016).
[Crossref]

A. Purkayastha, T. Srivastava, and R. Jha, “Ultrasensitive THz–plasmonics gaseous sensor using doped graphene,” Sens. Actuators B 227, 291–295 (2016).
[Crossref]

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48, 334 (2016).
[Crossref]

C.-H. Lin, S.-J. Chang, and T.-J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3, 095002 (2016).
[Crossref]

Z. Cheng and K. Goda, “Design of waveguide-integrated graphene devices for photonic gas sensing,” Nanotechnology 27, 505206 (2016).
[Crossref]

A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B 237, 969–973 (2016).
[Crossref]

2015 (3)

E. D. Gaspera and A. Martucci, “Sol-gel thin films for plasmonic gas sensors,” Sensors 15, 16910–16928 (2015).
[Crossref]

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

M. Abbasi-Firouzjah and B. Shokri, “Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature,” Thin Solid Films 577, 67–73 (2015).
[Crossref]

2014 (1)

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

2013 (4)

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5, 9615–9619 (2013).
[Crossref]

M. Manera and R. Rella, “Improved gas sensing performances in SPR sensors by transducers activation,” Sens. Actuators B 179, 175–186 (2013).
[Crossref]

O. Kotov, M. Kol’chenko, and Y. E. Lozovik, “Ultrahigh refractive index sensitivity of TE-polarized electromagnetic waves in graphene at the interface between two dielectric media,” Opt. Express 21, 13533–13546 (2013).
[Crossref]

G. A. C. Tellez, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13, 2541–2546 (2013).
[Crossref]

2012 (1)

2010 (2)

Y. Zhang, J. Liu, and C. Zhu, “Novel gas ionization sensors using carbon nanotubes,” Sens. Lett. 8, 219–227 (2010).
[Crossref]

S. Darbari, Y. Abdi, and S. Mohajerzadeh, “A novel carbon-nanotube gas sensor based on field ionization from branched nanostructures,” Eur. Phys. J. 52, 30602 (2010).
[Crossref]

2009 (1)

C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
[Crossref]

2008 (2)

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

2003 (1)

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171–174 (2003).
[Crossref]

2001 (1)

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A: 18, 1912–1928 (2001).
[Crossref]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[Crossref]

1996 (1)

A. Kruchinin and Y. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor,” Sens. Actuators B 30, 77–80 (1996).
[Crossref]

1993 (1)

A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sens. Actuators B 17, 35–40 (1993).
[Crossref]

1987 (1)

D. Cullen, R. Brown, and C. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987).
[Crossref]

Abbas, A. N.

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

Abbasi-Firouzjah, M.

M. Abbasi-Firouzjah and B. Shokri, “Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature,” Thin Solid Films 577, 67–73 (2015).
[Crossref]

Abdi, Y.

S. Darbari, Y. Abdi, and S. Mohajerzadeh, “A novel carbon-nanotube gas sensor based on field ionization from branched nanostructures,” Eur. Phys. J. 52, 30602 (2010).
[Crossref]

Ajayan, P. M.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171–174 (2003).
[Crossref]

Asgari, S.

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

S. Asgari and N. Granpayeh, “Tunable plasmonically induced reflection in graphene-coupled side resonators and its application,” J. Nanophoton. 11, 026012 (2017).
[Crossref]

Baeumner, A. J.

A. J. Baeumner, G. Gauglitz, and J. Homola, Advances in Direct Optical Detection (Springer, 2020).

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1999).

Bendickson, J. M.

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A: 18, 1912–1928 (2001).
[Crossref]

Berini, P.

G. A. C. Tellez, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13, 2541–2546 (2013).
[Crossref]

Biswas, S. R.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Bocková, M.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Boden, S. A.

X. Shi and S. A. Boden, “Scanning helium ion beam lithography,” in Frontiers of Nanoscience (Elsevier, 2016), pp. 563–594.

Brandenburg, A.

A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sens. Actuators B 17, 35–40 (1993).
[Crossref]

Brown, R.

D. Cullen, R. Brown, and C. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987).
[Crossref]

Brundrett, D. L.

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A: 18, 1912–1928 (2001).
[Crossref]

Buso, D.

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Cai, L.

W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
[Crossref]

Cai, S.

Caucheteur, C.

Chang, S.-J.

C.-H. Lin, S.-J. Chang, and T.-J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3, 095002 (2016).
[Crossref]

Chao, T.-C.

C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
[Crossref]

Chau, L.-K.

C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
[Crossref]

Chen, H.-F.

Chen, Q.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5, 9615–9619 (2013).
[Crossref]

Chen, X.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Chen, Y.

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 29984 (2016).
[Crossref]

Cheng, L.

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

Cheng, Z.

Z. Cheng and K. Goda, “Design of waveguide-integrated graphene devices for photonic gas sensing,” Nanotechnology 27, 505206 (2016).
[Crossref]

Chorsi, H. T.

M. T. Chorsi and H. T. Chorsi, “Graphene plasmonic nanogratings for biomolecular sensing in liquid,” Appl. Phys. A 123, 757 (2017).
[Crossref]

Chorsi, M. T.

M. T. Chorsi and H. T. Chorsi, “Graphene plasmonic nanogratings for biomolecular sensing in liquid,” Appl. Phys. A 123, 757 (2017).
[Crossref]

Cullen, D.

D. Cullen, R. Brown, and C. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987).
[Crossref]

Dai, Q.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Dai, X.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
[Crossref]

Darbari, S.

S. Darbari, Y. Abdi, and S. Mohajerzadeh, “A novel carbon-nanotube gas sensor based on field ionization from branched nanostructures,” Eur. Phys. J. 52, 30602 (2010).
[Crossref]

de Abajo, F. J. G.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

de Julián Fernández, C.

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Debliquy, M.

Dolatabady, A.

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

Duan, W.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Emami, F.

E. Rafiee, R. Negahdari, and F. Emami, “Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy,” Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019).
[Crossref]

Gaspera, E. D.

E. D. Gaspera and A. Martucci, “Sol-gel thin films for plasmonic gas sensors,” Sensors 15, 16910–16928 (2015).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

G. Gauglitz and J. Homola, Direct Optical Detection (Springer, 2015).

A. J. Baeumner, G. Gauglitz, and J. Homola, Advances in Direct Optical Detection (Springer, 2020).

Gaylord, T. K.

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A: 18, 1912–1928 (2001).
[Crossref]

Glytsis, E. N.

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A: 18, 1912–1928 (2001).
[Crossref]

Goda, K.

Z. Cheng and K. Goda, “Design of waveguide-integrated graphene devices for photonic gas sensing,” Nanotechnology 27, 505206 (2016).
[Crossref]

Gombert, A.

A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sens. Actuators B 17, 35–40 (1993).
[Crossref]

Gonçalves, P. A. D.

P. A. D. Gonçalves and N. M. Peres, An Introduction to Graphene Plasmonics (World Scientific, 2016).

Gong, H.

Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.

González-Vila, Á.

Gordon, R.

G. A. C. Tellez, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13, 2541–2546 (2013).
[Crossref]

Granpayeh, N.

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

S. Asgari and N. Granpayeh, “Tunable plasmonically induced reflection in graphene-coupled side resonators and its application,” J. Nanophoton. 11, 026012 (2017).
[Crossref]

Gu, B.-L.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Guo, C.

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

Guo, T.

Guo, X.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Guo, Z.

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided mode resonance sensors with optimized figure of merit,” Nanomaterial 9, 837 (2019).
[Crossref]

Han, Y.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Hao, S.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Hermannsson, P. G.

P. G. Hermannsson, “Design and use of guided mode resonance filters for refractive index sensing,” Ph.D. dissertation (Technical University of Denmark, 2015).

Homola, J.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[Crossref]

A. J. Baeumner, G. Gauglitz, and J. Homola, Advances in Direct Optical Detection (Springer, 2020).

G. Gauglitz and J. Homola, Direct Optical Detection (Springer, 2015).

Hsueh, T.-J.

C.-H. Lin, S.-J. Chang, and T.-J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3, 095002 (2016).
[Crossref]

Hu, H.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Hu, N.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Huang, B.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Huang, C.-T.

C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
[Crossref]

Hwang, G. W.

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

Ioannou, A.

Jen, C.-P.

C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
[Crossref]

Jha, R.

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48, 334 (2016).
[Crossref]

A. Purkayastha, T. Srivastava, and R. Jha, “Ultrasensitive THz–plasmonics gaseous sensor using doped graphene,” Sens. Actuators B 227, 291–295 (2016).
[Crossref]

Jin, L.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5, 9615–9619 (2013).
[Crossref]

Khaliji, K.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Kim, I.

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

Kim, W. M.

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

Kol’chenko, M.

Koratkar, N.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171–174 (2003).
[Crossref]

Kotov, O.

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[Crossref]

Kruchinin, A.

A. Kruchinin and Y. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor,” Sens. Actuators B 30, 77–80 (1996).
[Crossref]

Kwak, J. Y.

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

Lahem, D.

Lass, E.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171–174 (2003).
[Crossref]

Lee, H.-C.

Lee, H.-S.

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

Lee, K.-S.

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

Li, C.-T.

Li, H.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

Li, W.

W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
[Crossref]

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

Li, W.-Y.

C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
[Crossref]

Li, X.

W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
[Crossref]

Li, Z.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Liang, H.

Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.

Liang, X.

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

Liang, Z.

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 29984 (2016).
[Crossref]

Lin, C.-H.

C.-H. Lin, S.-J. Chang, and T.-J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3, 095002 (2016).
[Crossref]

Liu, B.

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

Liu, G.

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

Liu, H.

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

Liu, J.

Y. Zhang, J. Liu, and C. Zhu, “Novel gas ionization sensors using carbon nanotubes,” Sens. Lett. 8, 219–227 (2010).
[Crossref]

Liu, K.

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

Liu, Z.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Low, T.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Lowe, C.

D. Cullen, R. Brown, and C. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987).
[Crossref]

Loyez, M.

Lozovik, Y. E.

Ma, S.

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

Mahani, F. F.

Manera, M.

M. Manera and R. Rella, “Improved gas sensing performances in SPR sensors by transducers activation,” Sens. Actuators B 179, 175–186 (2013).
[Crossref]

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Mansouri-Birjandi, M. A.

M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
[Crossref]

Martucci, A.

E. D. Gaspera and A. Martucci, “Sol-gel thin films for plasmonic gas sensors,” Sensors 15, 16910–16928 (2015).
[Crossref]

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Mattei, G.

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Milovanov, Y.

Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.

Mishra, A. K.

A. K. Mishra and S. K. Mishra, “MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain,” J. Phys. Condens. Matter 29, 145001 (2017).
[Crossref]

A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B 237, 969–973 (2016).
[Crossref]

Mishra, S. K.

A. K. Mishra and S. K. Mishra, “MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain,” J. Phys. Condens. Matter 29, 145001 (2017).
[Crossref]

A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B 237, 969–973 (2016).
[Crossref]

Modi, A.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171–174 (2003).
[Crossref]

Mohajerzadeh, S.

S. Darbari, Y. Abdi, and S. Mohajerzadeh, “A novel carbon-nanotube gas sensor based on field ionization from branched nanostructures,” Eur. Phys. J. 52, 30602 (2010).
[Crossref]

Mokhtari, A.

Mulvaney, P.

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Nazarov, A.

Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.

Negahdari, R.

E. Rafiee, R. Negahdari, and F. Emami, “Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy,” Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019).
[Crossref]

Ohlberg, D.

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

Pan, M.

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 29984 (2016).
[Crossref]

Pandey, A. K.

A. K. Pandey and A. K. Sharma, “Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer,” Photon. Nanostruct. Fundam. Appl. 28, 94–99 (2018).
[Crossref]

Peres, N. M.

P. A. D. Gonçalves and N. M. Peres, An Introduction to Graphene Plasmonics (World Scientific, 2016).

Pérez-Juste, J.

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Purkayastha, A.

A. Purkayastha, T. Srivastava, and R. Jha, “Ultrasensitive THz–plasmonics gaseous sensor using doped graphene,” Sens. Actuators B 227, 291–295 (2016).
[Crossref]

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48, 334 (2016).
[Crossref]

Pustovyi, D.

Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.

Qin, S.

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

Rafiee, E.

E. Rafiee, R. Negahdari, and F. Emami, “Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy,” Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019).
[Crossref]

Rakhshani, M. R.

M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
[Crossref]

Raskin, J.-P.

Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.

Rella, R.

M. Manera and R. Rella, “Improved gas sensing performances in SPR sensors by transducers activation,” Sens. Actuators B 179, 175–186 (2013).
[Crossref]

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Ruan, B.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
[Crossref]

Salemizadeh, M.

Sang, T.

X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, “Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons,” AIP Adv. 6, 085301 (2016).
[Crossref]

Seong, T.-Y.

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

Sharma, A. K.

A. K. Pandey and A. K. Sharma, “Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer,” Photon. Nanostruct. Fundam. Appl. 28, 94–99 (2018).
[Crossref]

Shi, X.

X. Shi and S. A. Boden, “Scanning helium ion beam lithography,” in Frontiers of Nanoscience (Elsevier, 2016), pp. 563–594.

Shokri, B.

M. Abbasi-Firouzjah and B. Shokri, “Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature,” Thin Solid Films 577, 67–73 (2015).
[Crossref]

Skryshevsky, V.

Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.

Slobodian, O.

Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.

Song, H.

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

Song, S.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5, 9615–9619 (2013).
[Crossref]

Špacková, B.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Spadavecchia, J.

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Srivastava, T.

A. Purkayastha, T. Srivastava, and R. Jha, “Ultrasensitive THz–plasmonics gaseous sensor using doped graphene,” Sens. Actuators B 227, 291–295 (2016).
[Crossref]

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48, 334 (2016).
[Crossref]

Su, C.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Su, H.

Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.

Su, Y.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Sun, F.

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5, 9615–9619 (2013).
[Crossref]

Sun, M.

W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
[Crossref]

Sun, Y.

W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
[Crossref]

Sun, Z.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Tait, R. N.

G. A. C. Tellez, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13, 2541–2546 (2013).
[Crossref]

Tang, X.

Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.

Tellez, G. A. C.

G. A. C. Tellez, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13, 2541–2546 (2013).
[Crossref]

Un, I.-W.

Vakil, A.

A. Vakil, “Transformation optics using graphene: one-atom-thick optical devices based on graphene,” Ph.D. dissertation (University of Pennsylvania, 2012).

Vasanelli, L.

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

Vlasov, Y. G.

A. Kruchinin and Y. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor,” Sens. Actuators B 30, 77–80 (1996).
[Crossref]

Wang, B.

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided mode resonance sensors with optimized figure of merit,” Nanomaterial 9, 837 (2019).
[Crossref]

Wang, L.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

Wang, S.

Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.

Wang, Y.

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 29984 (2016).
[Crossref]

X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, “Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons,” AIP Adv. 6, 085301 (2016).
[Crossref]

Wei, B.

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171–174 (2003).
[Crossref]

Wei, H.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Wrobel, P.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Wu, J.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Wu, L.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
[Crossref]

Wu, W.

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

Wu, W.-T.

C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
[Crossref]

Wu, X.

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided mode resonance sensors with optimized figure of merit,” Nanomaterial 9, 837 (2019).
[Crossref]

Xiang, Y.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
[Crossref]

Xie, D.

W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
[Crossref]

Xu, W.

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

Xu, X.

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

Yan, S.

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

Yan, X.

X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, “Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons,” AIP Adv. 6, 085301 (2016).
[Crossref]

Yang, G.

X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, “Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons,” AIP Adv. 6, 085301 (2016).
[Crossref]

Yang, X.

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Yang, Z.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

Yen, T.-J.

You, Q.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
[Crossref]

Yuan, L.

X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, “Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons,” AIP Adv. 6, 085301 (2016).
[Crossref]

Yuan, X.

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

Zeng, M.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Zhai, X.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

Zhang, C.

Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.

Zhang, J.

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

Zhang, L.

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

Zhang, M.

Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.

Zhang, X.

Zhang, Y.

Y. Zhang, J. Liu, and C. Zhu, “Novel gas ionization sensors using carbon nanotubes,” Sens. Lett. 8, 219–227 (2010).
[Crossref]

Zhang, Z.

Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.

Zhou, C.

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

Zhou, G.

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

Zhou, Y.

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided mode resonance sensors with optimized figure of merit,” Nanomaterial 9, 837 (2019).
[Crossref]

Zhou, Z.

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Zhu, C.

Y. Zhang, J. Liu, and C. Zhu, “Novel gas ionization sensors using carbon nanotubes,” Sens. Lett. 8, 219–227 (2010).
[Crossref]

Zhu, J.

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
[Crossref]

Zhu, Z.

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

ACS Nano (1)

A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 1538–1546 (2014).
[Crossref]

AIP Adv. (1)

X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, “Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons,” AIP Adv. 6, 085301 (2016).
[Crossref]

Appl. Phys. A (1)

M. T. Chorsi and H. T. Chorsi, “Graphene plasmonic nanogratings for biomolecular sensing in liquid,” Appl. Phys. A 123, 757 (2017).
[Crossref]

Biosensors (1)

D. Cullen, R. Brown, and C. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211–225 (1987).
[Crossref]

Eur. Phys. J. (1)

S. Darbari, Y. Abdi, and S. Mohajerzadeh, “A novel carbon-nanotube gas sensor based on field ionization from branched nanostructures,” Eur. Phys. J. 52, 30602 (2010).
[Crossref]

IEEE Photon. J. (1)

Y. Xiang, J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photon. J. 10, 1–7 (2018).
[Crossref]

IEEE Sens. J. (1)

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

J. Nanophoton. (1)

S. Asgari and N. Granpayeh, “Tunable plasmonically induced reflection in graphene-coupled side resonators and its application,” J. Nanophoton. 11, 026012 (2017).
[Crossref]

J. Nanosci. Nanotechnol. (1)

W. Li, X. Li, L. Cai, Y. Sun, M. Sun, and D. Xie, “Reduced graphene oxide for room temperature ammonia (NH3) gas sensor,” J. Nanosci. Nanotechnol. 18, 7927–7932 (2018).
[Crossref]

J. Opt. Soc. Am. A: (1)

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A: 18, 1912–1928 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” J. Phys. Chem. C 112, 13442–13446 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

A. K. Mishra and S. K. Mishra, “MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain,” J. Phys. Condens. Matter 29, 145001 (2017).
[Crossref]

Lab Chip (1)

G. A. C. Tellez, R. N. Tait, P. Berini, and R. Gordon, “Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing,” Lab Chip 13, 2541–2546 (2013).
[Crossref]

Mater. Res. Express (1)

C.-H. Lin, S.-J. Chang, and T.-J. Hsueh, “A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate,” Mater. Res. Express 3, 095002 (2016).
[Crossref]

Nanomaterial (2)

C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications,” Nanomaterial 8, 1033 (2018).
[Crossref]

Y. Zhou, B. Wang, Z. Guo, and X. Wu, “Guided mode resonance sensors with optimized figure of merit,” Nanomaterial 9, 837 (2019).
[Crossref]

Nanoscale (1)

S. Song, Q. Chen, L. Jin, and F. Sun, “Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber,” Nanoscale 5, 9615–9619 (2013).
[Crossref]

Nanotechnology (2)

Z. Cheng and K. Goda, “Design of waveguide-integrated graphene devices for photonic gas sensing,” Nanotechnology 27, 505206 (2016).
[Crossref]

X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, and Z. Yang, “Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors,” Nanotechnology 30, 445503 (2019).
[Crossref]

Nat. Commun. (1)

H. Hu, X. Yang, X. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10, 1131 (2019).
[Crossref]

Nature (1)

A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171–174 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

T. Srivastava, A. Purkayastha, and R. Jha, “Graphene based surface plasmon resonance gas sensor for terahertz,” Opt. Quantum Electron. 48, 334 (2016).
[Crossref]

Photon. Nanostruct. Fundam. Appl. (3)

M. R. Rakhshani and M. A. Mansouri-Birjandi, “A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection,” Photon. Nanostruct. Fundam. Appl. 32, 28–34 (2018).
[Crossref]

E. Rafiee, R. Negahdari, and F. Emami, “Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy,” Photon. Nanostruct. Fundam. Appl. 33, 21–28 (2019).
[Crossref]

A. K. Pandey and A. K. Sharma, “Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer,” Photon. Nanostruct. Fundam. Appl. 28, 94–99 (2018).
[Crossref]

Proc. IEEE (1)

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proc. IEEE 104, 2380–2408 (2016).
[Crossref]

Sci. Rep. (3)

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 29984 (2016).
[Crossref]

H.-S. Lee, J. Y. Kwak, T.-Y. Seong, G. W. Hwang, W. M. Kim, I. Kim, and K.-S. Lee, “Optimization of tunable guided-mode resonance filter based on refractive index modulation of graphene,” Sci. Rep. 9, 19951 (2019).
[Crossref]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6, 36651 (2016).
[Crossref]

Sens. Actuators B (9)

A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sens. Actuators B 17, 35–40 (1993).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

A. Kruchinin and Y. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor,” Sens. Actuators B 30, 77–80 (1996).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999).
[Crossref]

M. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, and L. Vasanelli, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sens. Actuators B 132, 107–115 (2008).
[Crossref]

S. Yan, S. Ma, W. Li, X. Xu, L. Cheng, H. Song, and X. Liang, “Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sens. Actuators B 221, 88–95 (2015).
[Crossref]

A. Purkayastha, T. Srivastava, and R. Jha, “Ultrasensitive THz–plasmonics gaseous sensor using doped graphene,” Sens. Actuators B 227, 291–295 (2016).
[Crossref]

M. Manera and R. Rella, “Improved gas sensing performances in SPR sensors by transducers activation,” Sens. Actuators B 179, 175–186 (2013).
[Crossref]

A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B 237, 969–973 (2016).
[Crossref]

Sens. Lett. (1)

Y. Zhang, J. Liu, and C. Zhu, “Novel gas ionization sensors using carbon nanotubes,” Sens. Lett. 8, 219–227 (2010).
[Crossref]

Sensors (2)

E. D. Gaspera and A. Martucci, “Sol-gel thin films for plasmonic gas sensors,” Sensors 15, 16910–16928 (2015).
[Crossref]

C.-T. Huang, C.-P. Jen, T.-C. Chao, W.-T. Wu, W.-Y. Li, and L.-K. Chau, “A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors,” Sensors 9, 6456–6470 (2009).
[Crossref]

Thin Solid Films (1)

M. Abbasi-Firouzjah and B. Shokri, “Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature,” Thin Solid Films 577, 67–73 (2015).
[Crossref]

Other (9)

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1999).

A. Vakil, “Transformation optics using graphene: one-atom-thick optical devices based on graphene,” Ph.D. dissertation (University of Pennsylvania, 2012).

X. Shi and S. A. Boden, “Scanning helium ion beam lithography,” in Frontiers of Nanoscience (Elsevier, 2016), pp. 563–594.

P. A. D. Gonçalves and N. M. Peres, An Introduction to Graphene Plasmonics (World Scientific, 2016).

P. G. Hermannsson, “Design and use of guided mode resonance filters for refractive index sensing,” Ph.D. dissertation (Technical University of Denmark, 2015).

Z. Zhang, H. Su, H. Gong, S. Wang, M. Zhang, H. Liang, and C. Zhang, “Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz,” in Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (IEEE, 2017), pp. 3068–3072.

Y. Milovanov, V. Skryshevsky, O. Slobodian, D. Pustovyi, X. Tang, J.-P. Raskin, and A. Nazarov, “Influence of gas adsorption on the impedance of graphene oxide,” in IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO) (IEEE, 2019), pp. 155–158.

A. J. Baeumner, G. Gauglitz, and J. Homola, Advances in Direct Optical Detection (Springer, 2020).

G. Gauglitz and J. Homola, Direct Optical Detection (Springer, 2015).

Supplementary Material (1)

NameDescription
» Supplement 1       Dielectric properties of graphene.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) 3D schematic of the proposed design; (b) 2D unit cell with a period width of ${W_{{\rm{cell}}}}$ and GNR width of ${W_g}$. A laser beam is normally incident to the interface of the ambient under measurement (with a RI of ${n_a}$) and the GNG surface. Two GNR arrays are separated by a silica-based dielectric (with a RI of ${n_d}$). (c) Transmission wavelength spectrum of the structure shown in section (a).
Fig. 2.
Fig. 2. Normalized on-resonance fields comparison between single (top) and double (bottom) layer GNGs. (a) y component of the electric field (${E_y}$); (b) norm of the electric field; and (c) norm of the magnetic field.
Fig. 3.
Fig. 3. Performance of the sensor as a function of period width (${W_{{\rm{cell}}}}$). (a) ${T_{{\min}}}$ (dotted line) and ${T_{{\max}}}$ (dashed line) among the resonance wavelength (${\lambda _{{\min}}}$, solid); (b) sensitivity (solid line) and ${Q_S}$ (dotted line); (c) FWHM (solid line), and $Q$ (dotted line); (d) FoM.
Fig. 4.
Fig. 4. Device performance for simultaneous variations of the period width (${W_{{\rm{cell}}}}$) and the graphene fill fraction (${\rm{FF}} = {W_{{\rm{cell}}}}/{W_g}$). (a) Resonance wavelength (${\lambda _{{\min}}}$); (b) transmission at ${\lambda _{{\min}}}$ (${T_{{\min}}}$); (c) DA; (d) FoM.
Fig. 5.
Fig. 5. Performance of the sensor as a function of ${n_d}$. (a) Sensitivity (solid line) and $Q$ (dotted line); (b) FoM (solid line) and resonance wavelength (${\lambda _{{\min}}}$, dotted line).
Fig. 6.
Fig. 6. Performance of the sensor as a function of ${\mu _c}$. (a) ${T_{{\min}}}$ (dotted line) and ${T_{{\max}}}$ (dashed line) among the resonance wavelength (${\lambda _{{\min}}}$, solid line); (b) relative sensitivity (solid line) and quality factor ($Q$, dotted line); (c) FoM.

Tables (2)

Tables Icon

Table 1. Initial Physical and Geometrical Parameters Used in the Simulationsa

Tables Icon

Table 2. Performance Comparison between Our Proposed Structure and Recent Plasmonic Gas Sensors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n = r e a l { ε g } k = i m a g { ε g } ,
ε g = ε + i ε = 1 + i σ g η 0 k 0 Δ .
σ i n t r a = i 2 e 2 k B T π 2 ( ω + i τ 1 ) ln ( 2 cosh ( μ c 2 k B T ) ) .
σ i n t e r = π e 2 4 h ( tanh ω + 2 μ c 4 k B T + tanh ω 2 μ c 4 k B T ) + i e 2 2 h ( 4 μ c ω + ln | ω 2 μ c ω + 2 μ c | ) .

Metrics