Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Incidence angle-dependent broadband chiral metamaterial for near-infrared light absorption

Not Accessible

Your library or personal account may give you access

Abstract

The ability to spin-selectively absorb circularly polarized light plays a critical role in various photonic devices. Here we propose and investigate a broadband chiral metamaterial composed of asymmetric split-ring resonators, showing a wide spin-selective absorption band from 950 to 1200 nm with pronounced circular dichroism up to 20°. We demonstrate that the broadband absorption spectra originate from induced dual chiral resonance modes. Meanwhile, the two different resonances can be adjusted independently, suggesting great flexibility of the designed chiral absorption band for different purposes. Also, the chiral-selective absorption performance is highly dependent on the oblique incident angle due to the extrinsic chirality. The chiral resonance modes can be either enhanced or destroyed under oblique incidence. Such angle-dependent broadband chiral metamaterials may find potential applications for spin-orbit communications, chiral detection, polarimetric imaging, and biosensors.

© 2020 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.