Abstract

The interaction between graphene surface plasmons and a semiconductor quantum well has been investigated by means of scattering matrix simulations. Due to the strong confinement factor of the graphene layer, a large Rabi splitting arises from the interaction with intersubband transitions. By varying the Fermi energy in the graphene and the doping in the quantum well, the resulting polariton states show features of strong and ultra-strong coupling. The system has been modeled with the coupled-mode theory to find the highest quality factor for the polariton resonance, reaching a “highly resolved” ultra-strong coupling regime.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure

Jigang Hu, Enxu Yao, Weiqiang Xie, Wei Liu, Dongmei Li, Yonghua Lu, and Qiwen Zhan
Opt. Express 27(13) 18642-18652 (2019)

Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in graphene-integrated structures

Feng Liu, Tianrong Zhan, Alexander Y. Zhu, Fei Yi, and Wangzhou Shi
Opt. Express 24(2) 1480-1494 (2016)

Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies

Jigang Hu, Xiaohang Wu, Hongju Li, Enxu Yao, Weiqiang Xie, Wei Liu, Yonghua Lu, and Changjun Ming
J. Opt. Soc. Am. B 36(3) 697-704 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription