Abstract

Here, we propose a waveguide-integrated germanium plasmonic photodetector operating simultaneously at bandwidth exceeding 100 GHz and responsivity above 1 A/W. The proposed photodetector takes advantage of a long-range dielectric-loaded surface plasmon polariton waveguide configuration. As this configuration ensures a long propagation distance (i.e., small absorption into metal) and a good mode field confinement (i.e., high interaction of the electric field with a germanium material), it is perfect for the realization of plasmonic germanium photodetectors. Such a photodetector, even without optimization, provides a responsivity exceeding 1 A/W for wavelengths of 1310 and 1550 nm. To achieve such a responsivity, only a 5 μm long waveguide is required for 1310 nm and a 30 μm long waveguide for 1550 nm. With optimization, this value can be highly improved. In the proposed arrangement, a metal stripe simultaneously supports a propagating mode and serves as one of the electrodes, while the second electrode is located a short distance from the waveguide. As a propagating mode is tightly confined to the germanium ridge, the external electrode can be placed very close to the waveguide without disturbing it. As such, the distance between electrodes can be smaller than 350 nm, which allows one to achieve a bandwidth exceeding 100 GHz. However, as most of the carriers are generated inside a distance of 100 nm from a stripe, a bandwidth exceeding 150 GHz can be achieved for a bias voltage of 4V.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides

Ning-Ning Feng, Po Dong, Dawei Zheng, Shirong Liao, Hong Liang, Roshanak Shafiiha, Dazeng Feng, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(1) 96-101 (2010)

High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide

Laurent Vivien, Mathieu Rouvière, Jean-Marc Fédéli, Delphine Marris-Morini, Jean-François Damlencourt, Juliette Mangeney, Paul Crozat, Loubna El Melhaoui, Eric Cassan, Xavier Le Roux, Daniel Pascal, and Suzanne Laval
Opt. Express 15(15) 9843-9848 (2007)

High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding

Long Chen, Po Dong, and Michal Lipson
Opt. Express 16(15) 11513-11518 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35, 346–396 (2017).
    [Crossref]
  2. L. C. Kimerling, D.-L. Kwong, and K. Wada, “Scaling computation with silicon photonics,” MRS Bull. 39, 687–695 (2014).
    [Crossref]
  3. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  4. C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
    [Crossref]
  5. M. Piels and J. E. Bowers, “Photodetectors for silicon photonic integrated circuits,” in Photodetectors, B. Nabet, ed. (Woodhead Publishing, 2018), pp. 3–20.
  6. A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
    [Crossref]
  7. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polariton,” Rep. Prog. Phys. 76, 016402 (2013).
    [Crossref]
  8. A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
    [Crossref]
  9. S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, and J. Leuthold, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica 3, 741–747 (2016).
    [Crossref]
  10. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
    [Crossref]
  11. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012).
    [Crossref]
  12. I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
    [Crossref]
  13. J. Gosciniak, F. B. Atar, B. Corbett, and M. Rasras, “Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride,” Sci. Rep. 9, 6048 (2019).
    [Crossref]
  14. T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
    [Crossref]
  15. M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7, 53–59 (2012).
    [Crossref]
  16. P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
    [Crossref]
  17. Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).
  18. Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).
  19. G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, and J. E. Cunningham, “Improving CMOS-compatible Germanium photodetectors,” Opt. Express 20, 26345–26350 (2012).
    [Crossref]
  20. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18, 4986–4999 (2010).
    [Crossref]
  21. L. Virot, D. Benedikovic, B. Szelag, A.-C. Ramos, B. Karakus, J. M. Hartmann, X. Le Roux, P. Crozat, E. Cassan, D. Marris-Morini, and C. Baudot, “Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction,” Opt. Express 25, 19487–19496 (2017).
    [Crossref]
  22. D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J. M. Hartmann, C. Alonso-Ramos, X. Le Roux, P. Crozat, and E. Cassan, “25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photon. Res. 7, 437–444 (2019).
    [Crossref]
  23. H. Chen, M. Galili, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, L. Oxenlowe, J. Van Campenhout, and G. Roelkens, “100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors,” J. Lightwave Technol. 35, 722–726 (2017).
    [Crossref]
  24. Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
    [Crossref]
  25. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
    [Crossref]
  26. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
    [Crossref]
  27. B. Sturlesi, M. Grajower, N. Mazurski, and U. Levy, “Integrated amorphous silicon-aluminium long-range surface plasmon polariton (LR-SPP) waveguides,” APL Photon. 3, 036103 (2018).
    [Crossref]
  28. X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” J. Lightwave Technol. 31, 3361–3367 (2013).
    [Crossref]
  29. S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
    [Crossref]
  30. www.lumerical.com .
  31. C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors,” IEEE Photon. Technol. Lett. 15, 1585–1587 (2003).
    [Crossref]
  32. H.-J. Zang, G. S. Kim, G. J. Park, Y. S. Choi, and H. Y. Yu, “Asymmetrically contacted germanium photodiode using a metal–interlayer–semiconductor–metal structure for extremely large dark current suppression,” Opt. Lett. 41, 3686–3689 (2016).
    [Crossref]
  33. J.-Y. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett. 98, 092113 (2011).
    [Crossref]
  34. H. Venghaus and N. Grote, Fibre Optic Communication: Key Devices, 2nd ed., Springer Series in Optical Sciences (2017).
  35. Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
    [Crossref]
  36. C. W. Berry, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref]
  37. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [Crossref]
  38. J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25, 5244 (2017).
    [Crossref]

2019 (2)

2018 (6)

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

B. Sturlesi, M. Grajower, N. Mazurski, and U. Levy, “Integrated amorphous silicon-aluminium long-range surface plasmon polariton (LR-SPP) waveguides,” APL Photon. 3, 036103 (2018).
[Crossref]

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
[Crossref]

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

2017 (4)

2016 (4)

H.-J. Zang, G. S. Kim, G. J. Park, Y. S. Choi, and H. Y. Yu, “Asymmetrically contacted germanium photodiode using a metal–interlayer–semiconductor–metal structure for extremely large dark current suppression,” Opt. Lett. 41, 3686–3689 (2016).
[Crossref]

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, and J. Leuthold, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica 3, 741–747 (2016).
[Crossref]

2014 (3)

L. C. Kimerling, D.-L. Kwong, and K. Wada, “Scaling computation with silicon photonics,” MRS Bull. 39, 687–695 (2014).
[Crossref]

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

2013 (4)

C. W. Berry, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” J. Lightwave Technol. 31, 3361–3367 (2013).
[Crossref]

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polariton,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

2012 (3)

2011 (3)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

J.-Y. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett. 98, 092113 (2011).
[Crossref]

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[Crossref]

2010 (3)

2003 (1)

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors,” IEEE Photon. Technol. Lett. 15, 1585–1587 (2003).
[Crossref]

Absil, P.

Alonso-Ramos, C.

Amar, F.

Amin, R.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Assefa, S.

Atar, F. B.

J. Gosciniak, F. B. Atar, B. Corbett, and M. Rasras, “Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride,” Sci. Rep. 9, 6048 (2019).
[Crossref]

Aubin, G.

Avouris, P.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7, 53–59 (2012).
[Crossref]

Baehr-Jones, T.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Baeuerle, B.

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

Balakrishnan, S.

Baudot, C.

Bedell, S. W.

Benedikovic, D.

Bergman, K.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Berry, C. W.

C. W. Berry, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Boltasseva, A.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

M. Piels and J. E. Bowers, “Photodetectors for silicon photonic integrated circuits,” in Photodetectors, B. Nabet, ed. (Woodhead Publishing, 2018), pp. 3–20.

Bozhevolnyi, S. I.

Cassan, E.

Chen, H.

Cheng, B.

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

Cheng, Z.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Choi, Y. S.

Chui, C. O.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors,” IEEE Photon. Technol. Lett. 15, 1585–1587 (2003).
[Crossref]

Corbett, B.

J. Gosciniak, F. B. Atar, B. Corbett, and M. Rasras, “Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride,” Sci. Rep. 9, 6048 (2019).
[Crossref]

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25, 5244 (2017).
[Crossref]

Crozat, P.

Cunningham, J. E.

Dalir, H.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

De Coster, J.

de Fazio, D.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

De Heyn, P.

Dereux, A.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Desiatov, B.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Ding, Y.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Dong, J.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Dorodnyy, A.

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

Dutta, A.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
[Crossref]

Echtermeyer, T. J.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Eiden, A.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

Eiden, A. L.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Ellinger, F.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Emboras, A.

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

Fédéli, J. M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Fedoryshyn, Y.

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, and J. Leuthold, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica 3, 741–747 (2016).
[Crossref]

Ferrari, A. C.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Freitag, M.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7, 53–59 (2012).
[Crossref]

Freude, W.

Galili, M.

H. Chen, M. Galili, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, L. Oxenlowe, J. Van Campenhout, and G. Roelkens, “100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors,” J. Lightwave Technol. 35, 722–726 (2017).
[Crossref]

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Gorbachev, R. V.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Gosciniak, J.

J. Gosciniak, F. B. Atar, B. Corbett, and M. Rasras, “Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride,” Sci. Rep. 9, 6048 (2019).
[Crossref]

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25, 5244 (2017).
[Crossref]

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[Crossref]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref]

Gould, M.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Goykhman, I.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Grajower, M.

B. Sturlesi, M. Grajower, N. Mazurski, and U. Levy, “Integrated amorphous silicon-aluminium long-range surface plasmon polariton (LR-SPP) waveguides,” APL Photon. 3, 036103 (2018).
[Crossref]

Grote, N.

H. Venghaus and N. Grote, Fibre Optic Communication: Key Devices, 2nd ed., Springer Series in Optical Sciences (2017).

Han, Z.

Harter, T.

Hartmann, J. M.

Hassan, K.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Heni, W.

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

Henker, R.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Hochberg, M.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Holmgaard, T.

Hu, H.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

i Morral, A. F.

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Jakobs, P.

Josten, A.

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

Justice, J.

Kalavrouziotis, D.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Karakus, B.

Khan, U.

Khurgin, J.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Kikunage, K.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Kildishev, A. V.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
[Crossref]

Kim, G. S.

Kimerling, L. C.

L. C. Kimerling, D.-L. Kwong, and K. Wada, “Scaling computation with silicon photonics,” MRS Bull. 39, 687–695 (2014).
[Crossref]

Kinsey, N.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
[Crossref]

Köhnle, K.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Kumar, A.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Kwong, D.-L.

L. C. Kimerling, D.-L. Kwong, and K. Wada, “Scaling computation with silicon photonics,” MRS Bull. 39, 687–695 (2014).
[Crossref]

Lallas, E. N.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Lassaline, N.

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

Le Roux, X.

Lepage, G.

Leuthold, J.

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, and J. Leuthold, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica 3, 741–747 (2016).
[Crossref]

Levy, U.

B. Sturlesi, M. Grajower, N. Mazurski, and U. Levy, “Integrated amorphous silicon-aluminium long-range surface plasmon polariton (LR-SPP) waveguides,” APL Photon. 3, 036103 (2018).
[Crossref]

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

X. Shi, X. Zhang, Z. Han, U. Levy, and S. I. Bozhevolnyi, “CMOS-compatible long-range dielectric-loaded plasmonic waveguides,” J. Lightwave Technol. 31, 3361–3367 (2013).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Li, G.

Lidorikis, E.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Lim, A. E. J.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Lin, J.-Y.

J.-Y. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett. 98, 092113 (2011).
[Crossref]

Lo, G. Q.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Low, T.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7, 53–59 (2012).
[Crossref]

Luo, Y.

Ma, P.

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

Ma, Z.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Magill, P.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Maiti, R.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Markey, L.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Marris-Morini, D.

L. Virot, D. Benedikovic, B. Szelag, A.-C. Ramos, B. Karakus, J. M. Hartmann, X. Le Roux, P. Crozat, E. Cassan, D. Marris-Morini, and C. Baudot, “Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction,” Opt. Express 25, 19487–19496 (2017).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Masini, G.

Mazurski, N.

B. Sturlesi, M. Grajower, N. Mazurski, and U. Levy, “Integrated amorphous silicon-aluminium long-range surface plasmon polariton (LR-SPP) waveguides,” APL Photon. 3, 036103 (2018).
[Crossref]

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

Mekis, A.

Melikyan, A.

Mikulik, D.

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

Milana, S.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Miller, D. A. B.

Miscuglio, M.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Modreanu, M.

Mortensen, N. A.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Muehlbrandt, S.

Muslija, A.

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Nainani, A.

J.-Y. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett. 98, 092113 (2011).
[Crossref]

Nene, P. S.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Neumann, N.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Novoselov, K. S.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Offrein, B. J.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Okyay, A. K.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors,” IEEE Photon. Technol. Lett. 15, 1585–1587 (2003).
[Crossref]

Ophir, N.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Oxenlowe, L.

Oxenløwe, L. K.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Papaioannou, S.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Park, G. J.

Piels, M.

M. Piels and J. E. Bowers, “Photodetectors for silicon photonic integrated circuits,” in Photodetectors, B. Nabet, ed. (Woodhead Publishing, 2018), pp. 3–20.

Plestina, J. V.

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

Plettemeier, D.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Raj, K.

Ramos, A.-C.

Rasras, M.

J. Gosciniak, F. B. Atar, B. Corbett, and M. Rasras, “Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride,” Sci. Rep. 9, 6048 (2019).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Rice, P. M.

Roelkens, G.

Romero-Gomez, P.

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

Roy, A. M.

J.-Y. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett. 98, 092113 (2011).
[Crossref]

Saha, S.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
[Crossref]

Sahni, S.

Salamin, Y.

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

Saraswat, K. C.

J.-Y. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett. 98, 092113 (2011).
[Crossref]

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors,” IEEE Photon. Technol. Lett. 15, 1585–1587 (2003).
[Crossref]

Sassi, U.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

Schares, L.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Schliemann, J.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Shalaev, V. M.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Shappir, J.

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Shi, X.

Shubin, I.

Sorger, V. J.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Sturlesi, B.

B. Sturlesi, M. Grajower, N. Mazurski, and U. Levy, “Integrated amorphous silicon-aluminium long-range surface plasmon polariton (LR-SPP) waveguides,” APL Photon. 3, 036103 (2018).
[Crossref]

Sun, S.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Sun, Y.

J.-Y. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett. 98, 092113 (2011).
[Crossref]

Sun, Z.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Szelag, B.

Tahersima, M.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Tekin, T.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Thacker, H.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Thraskias, C. A.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Tomkos, I.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Topuria, T.

Trushin, M.

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

Van Campenhout, J.

Venghaus, H.

H. Venghaus and N. Grote, Fibre Optic Communication: Key Devices, 2nd ed., Springer Series in Optical Sciences (2017).

Verheyen, P.

Vincze, P.

Virot, L.

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vlasov, Y. A.

Volkov, V. S.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Vyrsokinos, K.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

Wada, K.

L. C. Kimerling, D.-L. Kwong, and K. Wada, “Scaling computation with silicon photonics,” MRS Bull. 39, 687–695 (2014).
[Crossref]

Wang, H.

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

Weeber, J. C.

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Wolf, S.

Xia, F.

Xiao, S.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Yang, S.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Yang, Y.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Yao, J.

Yu, H. Y.

Yvind, K.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Zang, H.-J.

Zhang, X.

Zhang, Y.

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18, 4986–4999 (2010).
[Crossref]

Zheng, X.

Zhu, X.

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

ACS Photon. (3)

P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, “Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size,” ACS Photon. 6, 154–161 (2018).
[Crossref]

Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn, W. Heni, B. Cheng, A. Josten, and J. Leuthold, “100 GHz plasmonic photodetector,” ACS Photon. 5, 3291–3297 (2018).
[Crossref]

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films,” ACS Photon. 5, 4423–4431 (2018).
[Crossref]

APL Photon. (1)

B. Sturlesi, M. Grajower, N. Mazurski, and U. Levy, “Integrated amorphous silicon-aluminium long-range surface plasmon polariton (LR-SPP) waveguides,” APL Photon. 3, 036103 (2018).
[Crossref]

Appl. Phys. Lett. (1)

J.-Y. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett. 98, 092113 (2011).
[Crossref]

IEEE Commun. Surveys Tuts. (1)

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” IEEE Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dorodnyy, Y. Salamin, P. Ma, J. V. Plestina, N. Lassaline, D. Mikulik, P. Romero-Gomez, A. F. i Morral, and J. Leuthold, “Plasmonic photodetectors,” IEEE J. Sel. Top. Quantum Electron. 24, 4600313 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors,” IEEE Photon. Technol. Lett. 15, 1585–1587 (2003).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, and J. M. Hartmann, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Laser Photon. Rev. (2)

A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, and T. Tekin, “Dielectric‐loaded plasmonic waveguide components: going practical,” Laser Photon. Rev. 7, 938–951(2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

MRS Bull. (1)

L. C. Kimerling, D.-L. Kwong, and K. Wada, “Scaling computation with silicon photonics,” MRS Bull. 39, 687–695 (2014).
[Crossref]

Nano Lett. (3)

T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors,” Nano Lett. 14, 3733–3742 (2014).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, “On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain,” Nano Lett. 16, 3005–3013 (2016).
[Crossref]

Nat. Commun. (1)

C. W. Berry, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Nat. Photonics (1)

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7, 53–59 (2012).
[Crossref]

Opt. Express (7)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012).
[Crossref]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref]

G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, and J. E. Cunningham, “Improving CMOS-compatible Germanium photodetectors,” Opt. Express 20, 26345–26350 (2012).
[Crossref]

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18, 4986–4999 (2010).
[Crossref]

L. Virot, D. Benedikovic, B. Szelag, A.-C. Ramos, B. Karakus, J. M. Hartmann, X. Le Roux, P. Crozat, E. Cassan, D. Marris-Morini, and C. Baudot, “Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction,” Opt. Express 25, 19487–19496 (2017).
[Crossref]

J. Gosciniak, J. Justice, U. Khan, M. Modreanu, and B. Corbett, “Study of high order plasmonic modes on ceramic nanodisks,” Opt. Express 25, 5244 (2017).
[Crossref]

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E. J. Lim, G. Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal germanium direct contact,” Opt. Express 22, 011367 (2014).
[Crossref]

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Rep. Prog. Phys. (1)

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polariton,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

Sci. Rep. (1)

J. Gosciniak, F. B. Atar, B. Corbett, and M. Rasras, “Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride,” Sci. Rep. 9, 6048 (2019).
[Crossref]

Other (5)

Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N. A. Mortensen, S. Xiao, and L. K. Oxenløwe, “Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz,” arXiv:1808.04815 (2018).

Z. Ma, K. Kikunage, H. Wang, S. Sun, R. Amin, M. Tahersima, R. Maiti, M. Miscuglio, H. Dalir, and V. J. Sorger, “Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity,” arXiv:1812.00894 (2018).

M. Piels and J. E. Bowers, “Photodetectors for silicon photonic integrated circuits,” in Photodetectors, B. Nabet, ed. (Woodhead Publishing, 2018), pp. 3–20.

H. Venghaus and N. Grote, Fibre Optic Communication: Key Devices, 2nd ed., Springer Series in Optical Sciences (2017).

www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Absorption coefficients of Si and Ge on Si and SiO2 in wavelengths of 400–1700 nm.
Fig. 2.
Fig. 2. (a) Proposed Ge LR-DLSPP photodetector arrangement and (b) cross-section of the structure. (c), (d) Mode effective index for (c) Si photonics rib waveguide and (d) Ge LR-DLSPP waveguide.
Fig. 3.
Fig. 3. (a), (b) Generation rate at the middle of the photodetector for (a) LR-DLSPP and (b) MIM photodetector arrangement. (c) Comparison of the losses in metallic stripe/contact on quantum efficiency as a function of the device length for LR-DLSPP and asymmetric MIM arrangements for 1310 and 1550 nm wavelengths.
Fig. 4.
Fig. 4. (a, c) Mode effective index and mode power attenuation (MPA), and (b, d) propagation distance for a structure with complex permittivity of (a, b) germanium and (c, d) under the assumption of 0 attenuation constant. Calculation performed for a wavelength of 1310 nm.
Fig. 5.
Fig. 5. (a, c) Mode effective index, mode power attenuation (MPA) and (b, d) propagation distance for a structure with complex permittivity of germanium and under the assumption of 0 attenuation constant. Calculation performed for a wavelength of 1550 nm.
Fig. 6.
Fig. 6. (a) Total power absorbed by a photodetector. (b) Photodetector responsivity as a function of the reserve bias for different device lengths.
Fig. 7.
Fig. 7. Schematic of the band diagram of the Au-Ge-Au structure (a) without bias and (b, c) under bias for a structures (a, b) with the active area extended between both metal contacts and (c) limited only to the small volume around the electrode supporting a propagating LR-DLSPP mode.
Fig. 8.
Fig. 8. (a)–(d) Mode effective index and corresponding MPAs (a) for a structure without an external electrode and (b–d) for different spacing between the electrodes. Here, a distance was provided between an external electrode and a ridge. (e) Normalized frequency responses under 2 and 4V reverse bias voltage for electrode spacing of s=540nm.

Tables (1)

Tables Icon

Table 1. Figures of Merit (FoM) for Plasmonic Waveguides [7,26]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

FoM=Lp2λ0neffw03,
IQE=αGeLGeαGeLGe+αmLm(1exp((αGeLGe+αmLm))),
Pabs=0.5Re(·P)=0.5ω|E|2Im(ε(ω)).
g=Pabsω=0.5|E|2Im(ε(ω)).
fRC=12πReffCpd,
ft3.5v2πdabs,

Metrics