Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Lasing in III–V microdisk core–TiO2 shell lasers

Not Accessible

Your library or personal account may give you access

Abstract

Microdisk lasers having a III–V core coated with a TiO2 shell are experimentally studied under optical pumping. Initial core microdisk lasers with a 5–10 μm diameter comprising five layers of InAs/In0.15Ga0.85As quantum dots demonstrate room temperature lasing with excellent characteristics (threshold, quality factor) at the ground state optical transition in the 1.28–1.30 μm spectral range. Deposition of the TiO2 dielectric shell results in a decimation of the whispering gallery modes of the microdisk resonator and, for thicker (>100nm) shells, in a blueshift of the lasing wavelength. Using numerical analysis, we demonstrate that coating a III–V core microdisk with a high-index shell causes strong penetration of the second and third radial modes into the shell, whereas the first radial mode remains nearly undisturbed. Though optical loss added by the TiO2 dielectric shell is low (it does not exceed 2cm1 even for a 250-nm-thick TiO2 layer), mode leakage to the TiO2 results in a decrease in the optical confinement factor and an increase in the threshold pump power. This effect is more pronounced in microlasers of the smallest diameter studied (5 μm). Thus, in addition to other applications, a TiO2 shell can be used for mode selection in microdisk lasers or for selective outcoupling of the emission to the waveguide structure, which requires proper adjustment of the TiO2 shell thickness and microdisk diameter.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Strip-loaded horizontal slot waveguide for routing microdisk laser emission

Marina Fetisova, Natalia Kryzhanovskaya, Igor Reduto, Valentina Zhurikhina, Olga Morozova, Aleksandr Raskhodchikov, Matthieu Roussey, Ségolène Pélisset, Marina Kulagina, Yulia Guseva, Andrey Lipovskii, Mikhail Maximov, and Alexey Zhukov
J. Opt. Soc. Am. B 37(6) 1878-1885 (2020)

Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding

Toshihide Ide, Toshihiko Baba, Jun Tatebayashi, Satoshi Iwamoto, Toshihiro Nakaoka, and Yasuhiko Arakawa
Opt. Express 13(5) 1615-1620 (2005)

Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots

N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, and A. E. Zhukov
Photon. Res. 7(6) 664-668 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.