Abstract

In this paper, coupled power-gain equations were derived and solved to investigate the role of different power-degradation mechanisms on the continuous-wave power performance of a laser in the absence of thermal effects. Nine different power-degradation cases were considered, including a low-gain ideal four-level operation, ground-state reabsorption, pump excited-state absorption with and without storage, laser excited-state absorption with and without storage, intermediate storage, and Auger-type energy transfer upconversion with and without storage. There were three distinct types of laser performance identified, in terms of how the output power varies as a function of the pump power. Explicit analytical expressions were derived for the threshold pump power Pth, slope efficiency η, and the product Pthη/T as a function of output coupler transmission T and other physical parameters that describe the power degradation mechanism. The analytical approach developed here provides valuable insight about the role of major power degradation mechanisms in lasers, and it should be applicable to the analysis of a wide range of low-power, optically pumped laser media, including solid-state, fiber, and ceramic lasers.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson
Opt. Express 17(14) 11935-11943 (2009)

Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers

Stefan Bjurshagen and Ralf Koch
Appl. Opt. 43(24) 4753-4767 (2004)

Formation mechanism of optical bistability in end-pumped quasi-three-level Tm, Ho:YLF lasers

Xinlu Zhang, Li Li, Yang Zheng, and Yuezhu Wang
J. Opt. Soc. Am. B 26(12) 2434-2439 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription