Abstract

We investigate the optical bistability of graphene in parity-time-symmetric (PT-symmetric) photonic lattices incorporated with a defect at terahertz frequencies. The field localization of the defect mode can strengthen the nonlinearity of graphene to achieve low-threshold bistability. The nonlinearity is further enhanced, and the bistability threshold decreases, by increasing the gain-loss factor in the PT-symmetric structure. The interval of upper and lower bistability thresholds is broadened as the exceptional points split. Moreover, we show the phase transition between bistability and nonbistability by modulating the incident wavelength and chemical potential of graphene. The study may find great applications in all-optical switches and optical storage.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Multilayer graphene based optical bistability

Mehdi Sadeghi and Vahid Ahmadi
J. Opt. Soc. Am. B 35(3) 528-532 (2018)

Mixed-gap vector solitons in parity-time-symmetric mixed linear–nonlinear optical lattices

Xing Zhu, Pu Cao, Liyan Song, Yingji He, and Huagang Li
J. Opt. Soc. Am. B 31(9) 2109-2115 (2014)

Graphene-based low-threshold and tunable optical bistability in one-dimensional photonic crystal Fano resonance heterostructure at optical communication band

Yuxiang Peng, Jiao Xu, Hu Dong, Xiaoyu Dai, Jie Jiang, Shengyou Qian, and Leyong Jiang
Opt. Express 28(23) 34948-34959 (2020)

References

  • View by:
  • |
  • |
  • |

  1. G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 2000).
  2. C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
    [Crossref]
  3. W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
    [Crossref]
  4. H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
    [Crossref]
  5. M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
    [Crossref]
  6. M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003).
    [Crossref]
  7. N. Brandonisio, P. Heinricht, S. Osborne, A. Amann, and S. O’Brien, “Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback,” IEEE Photon. J. 4, 95–103 (2012).
    [Crossref]
  8. N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).
    [Crossref]
  9. M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
    [Crossref]
  10. L. Jiang, J. Guo, L. Wu, X. Dai, and Y. Xiang, “Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene,” Opt. Express 23, 31181–31191 (2015).
    [Crossref]
  11. J. He and M. Cada, “Combined distributed feedback and Fabry–Perot structures with a phase-matching layer for optical bistable devices,” Appl. Phys. Lett. 61, 2150–2152 (1992).
    [Crossref]
  12. Y. Xiang, X. Dai, J. Guo, S. Wen, and D. Tang, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
    [Crossref]
  13. D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
    [Crossref]
  14. J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
    [Crossref]
  15. D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26, 2817–2828 (2018).
    [Crossref]
  16. P. Meng, D. Zhao, D. Zhong, and W. Liu, “Topological plasmonic modes in graphene coated nanowire arrays,” Opt. Quantum Electron. 51, 156 (2019).
    [Crossref]
  17. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
    [Crossref]
  18. A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
    [Crossref]
  19. M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
    [Crossref]
  20. J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
    [Crossref]
  21. S. Shareef, Y. S. Ang, and C. Zhang, “Room-temperature strong terahertz photon mixing in graphene,” J. Opt. Soc. Am. B 29, 274–279 (2012).
    [Crossref]
  22. T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
    [Crossref]
  23. S. A. Mikhailov, “Comment on ‘Graphene—a rather ordinary nonlinear optical material’ [Appl. Phys. Lett. 104, 161116 (2014)],” Appl. Phys. Lett. 111, 106101 (2017).
    [Crossref]
  24. J. B. Khurgin, “Response to ‘Comment on “Graphene—a rather ordinary nonlinear optical material”’ [Appl. Phys. Lett. 111, 106101 (2017)],” Appl. Phys. Lett. 111, 106102 (2017).
    [Crossref]
  25. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
    [Crossref]
  26. Z. Wen and Z. Yan, “Dynamical behaviors of optical solitons in parity–time (PT) symmetric sextic anharmonic double-well potentials,” Phys. Lett. A 379, 2025–2029 (2015).
    [Crossref]
  27. R. Wang, Q. Zhang, D. Li, S. Xu, P. Cao, Y. Zhou, W. Cao, and P. Lu, “Identification of tunneling and multiphoton ionization in intermediate Keldysh parameter regime,” Opt. Express 27, 6471–6482 (2019).
    [Crossref]
  28. D. Zhao, W. Liu, S. Ke, and Q. Liu, “Large lateral shift in complex dielectric multilayers with nearly parity–time symmetry,” Opt. Quantum Electron. 50, 323 (2018).
    [Crossref]
  29. Q. Liu, S. Ke, and W. Liu, “Mode conversion and absorption in an optical waveguide under cascaded complex modulations,” Opt. Quantum Electron. 50, 356 (2018).
    [Crossref]
  30. C. Zhai, Y. Zhang, and Q. Zhang, “Characterizing the ellipticity of an isolated attosecond pulse,” Opt. Commun. 437, 104–109 (2019).
    [Crossref]
  31. S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, “Topological bound modes in anti-PT-symmetric optical waveguide arrays,” Opt. Express 27, 13858–13870 (2019).
    [Crossref]
  32. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
    [Crossref]
  33. W. Li, Y. Jiang, C. Li, and H. Song, “Parity-time-symmetry enhanced optomechanically-induced-transparency,” Sci. Rep. 6, 31095 (2016).
    [Crossref]
  34. Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
    [Crossref]
  35. X. F. Zhu, “Defect states and exceptional point splitting in the band gaps of one-dimensional parity-time lattices,” Opt. Express 23, 22274–22284 (2015).
    [Crossref]
  36. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
    [Crossref]
  37. Z. Wang, B. Wang, H. Long, K. Wang, and P. Lu, “Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays,” J. Lightwave Technol. 35, 2960–2965 (2017).
    [Crossref]
  38. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
    [Crossref]
  39. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
    [Crossref]
  40. D. Zhao, D. Zhong, Y. Hu, S. Ke, and W. Liu, “Imaginary modulation inducing giant spatial Goos–Hänchen shifts in one-dimensional defective photonic lattices,” Opt. Quantum Electron. 51, 113 (2019).
    [Crossref]
  41. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).
  42. P. Y. Chen and J. Jung, “PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces,” Phys. Rev. Appl. 5, 064018 (2016).
    [Crossref]
  43. M. Sakhdari, M. Farhat, and P. Y. Chen, “PT-symmetric metasurfaces: wave manipulation and sensing using singular points,” New J. Phys. 19, 065002 (2017).
    [Crossref]
  44. M. Sakhari, N. Estakhri, H. Bagci, and P. Y. Chen, “Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures,” Phys. Rev. Appl. 10, 024030 (2018).
    [Crossref]
  45. D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photon. Rev. 8, 291–296 (2014).
    [Crossref]
  46. S. A. Mikhailow, “Non-linear electromagnetic response of graphene,” Europhys. Lett. 79, 27002 (2007).
    [Crossref]
  47. X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
    [Crossref]
  48. P. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of nonlinear loss and gain in multilayer PT-symmetric Bragg grating,” IEEE J. Quantum Electron. 53, 2100111 (2017).
    [Crossref]
  49. L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity–time symmetry,” Nat. Photonics 11, 752–762 (2017).
    [Crossref]
  50. S. Savoia, G. Castaldi, V. Galdi, A. Alú, and N. Engheta, “Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers,” Phys. Rev. B 89, 085105 (2014).
    [Crossref]
  51. O. V. Shramkova and G. P. Tsironis, “Scattering properties of PT-symmetric layered periodic structures,” J. Opt. 18, 105101 (2016).
    [Crossref]
  52. P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
    [Crossref]
  53. I. Al-Naib, J. E. Sipe, and M. M. Dignam, “High harmonic generation in undoped graphene: interplay of inter-and intraband dynamics,” Phys. Rev. B 90, 245423 (2014).
    [Crossref]
  54. I. Al-Naib, M. Poschmann, and M. M. Dignam, “Optimizing third-harmonic generation at terahertz frequencies in graphene,” Phys. Rev. B 91, 205407 (2015).
    [Crossref]
  55. N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356, 736–738 (2017).
    [Crossref]

2019 (5)

P. Meng, D. Zhao, D. Zhong, and W. Liu, “Topological plasmonic modes in graphene coated nanowire arrays,” Opt. Quantum Electron. 51, 156 (2019).
[Crossref]

R. Wang, Q. Zhang, D. Li, S. Xu, P. Cao, Y. Zhou, W. Cao, and P. Lu, “Identification of tunneling and multiphoton ionization in intermediate Keldysh parameter regime,” Opt. Express 27, 6471–6482 (2019).
[Crossref]

C. Zhai, Y. Zhang, and Q. Zhang, “Characterizing the ellipticity of an isolated attosecond pulse,” Opt. Commun. 437, 104–109 (2019).
[Crossref]

S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, “Topological bound modes in anti-PT-symmetric optical waveguide arrays,” Opt. Express 27, 13858–13870 (2019).
[Crossref]

D. Zhao, D. Zhong, Y. Hu, S. Ke, and W. Liu, “Imaginary modulation inducing giant spatial Goos–Hänchen shifts in one-dimensional defective photonic lattices,” Opt. Quantum Electron. 51, 113 (2019).
[Crossref]

2018 (7)

M. Sakhari, N. Estakhri, H. Bagci, and P. Y. Chen, “Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures,” Phys. Rev. Appl. 10, 024030 (2018).
[Crossref]

D. Zhao, W. Liu, S. Ke, and Q. Liu, “Large lateral shift in complex dielectric multilayers with nearly parity–time symmetry,” Opt. Quantum Electron. 50, 323 (2018).
[Crossref]

Q. Liu, S. Ke, and W. Liu, “Mode conversion and absorption in an optical waveguide under cascaded complex modulations,” Opt. Quantum Electron. 50, 356 (2018).
[Crossref]

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26, 2817–2828 (2018).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

2017 (8)

S. A. Mikhailov, “Comment on ‘Graphene—a rather ordinary nonlinear optical material’ [Appl. Phys. Lett. 104, 161116 (2014)],” Appl. Phys. Lett. 111, 106101 (2017).
[Crossref]

J. B. Khurgin, “Response to ‘Comment on “Graphene—a rather ordinary nonlinear optical material”’ [Appl. Phys. Lett. 111, 106101 (2017)],” Appl. Phys. Lett. 111, 106102 (2017).
[Crossref]

D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
[Crossref]

M. Sakhdari, M. Farhat, and P. Y. Chen, “PT-symmetric metasurfaces: wave manipulation and sensing using singular points,” New J. Phys. 19, 065002 (2017).
[Crossref]

Z. Wang, B. Wang, H. Long, K. Wang, and P. Lu, “Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays,” J. Lightwave Technol. 35, 2960–2965 (2017).
[Crossref]

P. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of nonlinear loss and gain in multilayer PT-symmetric Bragg grating,” IEEE J. Quantum Electron. 53, 2100111 (2017).
[Crossref]

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity–time symmetry,” Nat. Photonics 11, 752–762 (2017).
[Crossref]

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356, 736–738 (2017).
[Crossref]

2016 (4)

O. V. Shramkova and G. P. Tsironis, “Scattering properties of PT-symmetric layered periodic structures,” J. Opt. 18, 105101 (2016).
[Crossref]

P. Y. Chen and J. Jung, “PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces,” Phys. Rev. Appl. 5, 064018 (2016).
[Crossref]

W. Li, Y. Jiang, C. Li, and H. Song, “Parity-time-symmetry enhanced optomechanically-induced-transparency,” Sci. Rep. 6, 31095 (2016).
[Crossref]

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

2015 (5)

X. F. Zhu, “Defect states and exceptional point splitting in the band gaps of one-dimensional parity-time lattices,” Opt. Express 23, 22274–22284 (2015).
[Crossref]

Z. Wen and Z. Yan, “Dynamical behaviors of optical solitons in parity–time (PT) symmetric sextic anharmonic double-well potentials,” Phys. Lett. A 379, 2025–2029 (2015).
[Crossref]

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

L. Jiang, J. Guo, L. Wu, X. Dai, and Y. Xiang, “Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene,” Opt. Express 23, 31181–31191 (2015).
[Crossref]

I. Al-Naib, M. Poschmann, and M. M. Dignam, “Optimizing third-harmonic generation at terahertz frequencies in graphene,” Phys. Rev. B 91, 205407 (2015).
[Crossref]

2014 (7)

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

I. Al-Naib, J. E. Sipe, and M. M. Dignam, “High harmonic generation in undoped graphene: interplay of inter-and intraband dynamics,” Phys. Rev. B 90, 245423 (2014).
[Crossref]

S. Savoia, G. Castaldi, V. Galdi, A. Alú, and N. Engheta, “Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers,” Phys. Rev. B 89, 085105 (2014).
[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).
[Crossref]

Y. Xiang, X. Dai, J. Guo, S. Wen, and D. Tang, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

2013 (2)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
[Crossref]

2012 (3)

S. Shareef, Y. S. Ang, and C. Zhang, “Room-temperature strong terahertz photon mixing in graphene,” J. Opt. Soc. Am. B 29, 274–279 (2012).
[Crossref]

N. Brandonisio, P. Heinricht, S. Osborne, A. Amann, and S. O’Brien, “Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback,” IEEE Photon. J. 4, 95–103 (2012).
[Crossref]

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref]

2011 (2)

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

2010 (2)

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

2009 (1)

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[Crossref]

2007 (2)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
[Crossref]

S. A. Mikhailow, “Non-linear electromagnetic response of graphene,” Europhys. Lett. 79, 27002 (2007).
[Crossref]

2003 (1)

2002 (2)

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[Crossref]

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

2001 (1)

H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
[Crossref]

1992 (1)

J. He and M. Cada, “Combined distributed feedback and Fabry–Perot structures with a phase-matching layer for optical bistable devices,” Appl. Phys. Lett. 61, 2150–2152 (1992).
[Crossref]

Adams, G. B.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

Almeida, V. R.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Al-Naib, I.

I. Al-Naib, M. Poschmann, and M. M. Dignam, “Optimizing third-harmonic generation at terahertz frequencies in graphene,” Phys. Rev. B 91, 205407 (2015).
[Crossref]

I. Al-Naib, J. E. Sipe, and M. M. Dignam, “High harmonic generation in undoped graphene: interplay of inter-and intraband dynamics,” Phys. Rev. B 90, 245423 (2014).
[Crossref]

Alú, A.

S. Savoia, G. Castaldi, V. Galdi, A. Alú, and N. Engheta, “Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers,” Phys. Rev. B 89, 085105 (2014).
[Crossref]

Alù, A.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

Amann, A.

N. Brandonisio, P. Heinricht, S. Osborne, A. Amann, and S. O’Brien, “Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback,” IEEE Photon. J. 4, 95–103 (2012).
[Crossref]

Ang, Y. S.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

S. Shareef, Y. S. Ang, and C. Zhang, “Room-temperature strong terahertz photon mixing in graphene,” J. Opt. Soc. Am. B 29, 274–279 (2012).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref]

Bagci, H.

M. Sakhari, N. Estakhri, H. Bagci, and P. Y. Chen, “Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures,” Phys. Rev. Appl. 10, 024030 (2018).
[Crossref]

Bian, B. R.

X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
[Crossref]

Bludov, Y. V.

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).
[Crossref]

Bowlan, P.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Brandonisio, N.

N. Brandonisio, P. Heinricht, S. Osborne, A. Amann, and S. O’Brien, “Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback,” IEEE Photon. J. 4, 95–103 (2012).
[Crossref]

Cada, M.

J. He and M. Cada, “Combined distributed feedback and Fabry–Perot structures with a phase-matching layer for optical bistable devices,” Appl. Phys. Lett. 61, 2150–2152 (1992).
[Crossref]

Calleja, J. M.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

Canonico, M.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

Cao, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Cao, J. C.

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[Crossref]

Cao, P.

Cao, W.

Castaldi, G.

S. Savoia, G. Castaldi, V. Galdi, A. Alú, and N. Engheta, “Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers,” Phys. Rev. B 89, 085105 (2014).
[Crossref]

Chen, P. Y.

M. Sakhari, N. Estakhri, H. Bagci, and P. Y. Chen, “Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures,” Phys. Rev. Appl. 10, 024030 (2018).
[Crossref]

M. Sakhdari, M. Farhat, and P. Y. Chen, “PT-symmetric metasurfaces: wave manipulation and sensing using singular points,” New J. Phys. 19, 065002 (2017).
[Crossref]

P. Y. Chen and J. Jung, “PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces,” Phys. Rev. Appl. 5, 064018 (2016).
[Crossref]

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

Chen, X.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

Chen, Y. F.

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Cheng, J.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Cheng, J. L.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

Christodoulides, D. N.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref]

Dai, X.

L. Jiang, J. Guo, L. Wu, X. Dai, and Y. Xiang, “Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene,” Opt. Express 23, 31181–31191 (2015).
[Crossref]

Y. Xiang, X. Dai, J. Guo, S. Wen, and D. Tang, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Dai, Y.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
[Crossref]

Dignam, M. M.

I. Al-Naib, M. Poschmann, and M. M. Dignam, “Optimizing third-harmonic generation at terahertz frequencies in graphene,” Phys. Rev. B 91, 205407 (2015).
[Crossref]

I. Al-Naib, J. E. Sipe, and M. M. Dignam, “High harmonic generation in undoped graphene: interplay of inter-and intraband dynamics,” Phys. Rev. B 90, 245423 (2014).
[Crossref]

Eichelkraut, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

El-Ganainy, R.

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity–time symmetry,” Nat. Photonics 11, 752–762 (2017).
[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Elsaesser, T.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Engheta, N.

S. Savoia, G. Castaldi, V. Galdi, A. Alú, and N. Engheta, “Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers,” Phys. Rev. B 89, 085105 (2014).
[Crossref]

Estakhri, N.

M. Sakhari, N. Estakhri, H. Bagci, and P. Y. Chen, “Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures,” Phys. Rev. Appl. 10, 024030 (2018).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
[Crossref]

Fan, S.

Fan, X.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Farhat, M.

M. Sakhdari, M. Farhat, and P. Y. Chen, “PT-symmetric metasurfaces: wave manipulation and sensing using singular points,” New J. Phys. 19, 065002 (2017).
[Crossref]

Fegadolli, W. S.

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Feng, L.

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity–time symmetry,” Nat. Photonics 11, 752–762 (2017).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Fink, Y.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[Crossref]

Galdi, V.

S. Savoia, G. Castaldi, V. Galdi, A. Alú, and N. Engheta, “Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers,” Phys. Rev. B 89, 085105 (2014).
[Crossref]

Gan, L.

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

Ge, L.

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity–time symmetry,” Nat. Photonics 11, 752–762 (2017).
[Crossref]

Gong, S.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

Guo, J.

L. Jiang, J. Guo, L. Wu, X. Dai, and Y. Xiang, “Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene,” Opt. Express 23, 31181–31191 (2015).
[Crossref]

Y. Xiang, X. Dai, J. Guo, S. Wen, and D. Tang, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Han, X.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Harris, G.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

He, G. S.

G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 2000).

He, J.

J. He and M. Cada, “Combined distributed feedback and Fabry–Perot structures with a phase-matching layer for optical bistable devices,” Appl. Phys. Lett. 61, 2150–2152 (1992).
[Crossref]

Heinricht, P.

N. Brandonisio, P. Heinricht, S. Osborne, A. Amann, and S. O’Brien, “Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback,” IEEE Photon. J. 4, 95–103 (2012).
[Crossref]

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Hu, M.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

Hu, Y.

D. Zhao, D. Zhong, Y. Hu, S. Ke, and W. Liu, “Imaginary modulation inducing giant spatial Goos–Hänchen shifts in one-dimensional defective photonic lattices,” Opt. Quantum Electron. 51, 113 (2019).
[Crossref]

Huang, D.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Ibanescu, M.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[Crossref]

Jauho, A. P.

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).
[Crossref]

Jiang, L.

Jiang, T.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Jiang, Y.

W. Li, Y. Jiang, C. Li, and H. Song, “Parity-time-symmetry enhanced optomechanically-induced-transparency,” Sci. Rep. 6, 31095 (2016).
[Crossref]

Joannopoulos, J. D.

M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003).
[Crossref]

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[Crossref]

Johnson, S. G.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[Crossref]

Jung, J.

P. Y. Chen and J. Jung, “PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces,” Phys. Rev. Appl. 5, 064018 (2016).
[Crossref]

Ke, S.

D. Zhao, D. Zhong, Y. Hu, S. Ke, and W. Liu, “Imaginary modulation inducing giant spatial Goos–Hänchen shifts in one-dimensional defective photonic lattices,” Opt. Quantum Electron. 51, 113 (2019).
[Crossref]

S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, “Topological bound modes in anti-PT-symmetric optical waveguide arrays,” Opt. Express 27, 13858–13870 (2019).
[Crossref]

Q. Liu, S. Ke, and W. Liu, “Mode conversion and absorption in an optical waveguide under cascaded complex modulations,” Opt. Quantum Electron. 50, 356 (2018).
[Crossref]

D. Zhao, W. Liu, S. Ke, and Q. Liu, “Large lateral shift in complex dielectric multilayers with nearly parity–time symmetry,” Opt. Quantum Electron. 50, 323 (2018).
[Crossref]

D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26, 2817–2828 (2018).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “Response to ‘Comment on “Graphene—a rather ordinary nonlinear optical material”’ [Appl. Phys. Lett. 111, 106101 (2017)],” Appl. Phys. Lett. 111, 106102 (2017).
[Crossref]

Kip, D.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Kivshar, Y. S.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Kong, X. K.

X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
[Crossref]

Kottos, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Li, C.

W. Li, Y. Jiang, C. Li, and H. Song, “Parity-time-symmetry enhanced optomechanically-induced-transparency,” Sci. Rep. 6, 31095 (2016).
[Crossref]

Li, D.

Li, W.

W. Li, Y. Jiang, C. Li, and H. Song, “Parity-time-symmetry enhanced optomechanically-induced-transparency,” Sci. Rep. 6, 31095 (2016).
[Crossref]

Li, X.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Li, Z. Y.

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

Liao, Q.

Lin, Z.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Liu, J.

S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, “Topological bound modes in anti-PT-symmetric optical waveguide arrays,” Opt. Express 27, 13858–13870 (2019).
[Crossref]

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

Liu, K.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Liu, Q.

S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, “Topological bound modes in anti-PT-symmetric optical waveguide arrays,” Opt. Express 27, 13858–13870 (2019).
[Crossref]

D. Zhao, W. Liu, S. Ke, and Q. Liu, “Large lateral shift in complex dielectric multilayers with nearly parity–time symmetry,” Opt. Quantum Electron. 50, 323 (2018).
[Crossref]

Q. Liu, S. Ke, and W. Liu, “Mode conversion and absorption in an optical waveguide under cascaded complex modulations,” Opt. Quantum Electron. 50, 356 (2018).
[Crossref]

D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26, 2817–2828 (2018).
[Crossref]

Liu, S.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

Liu, S. B.

X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
[Crossref]

Liu, S. H.

G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 2000).

Liu, W.

P. Meng, D. Zhao, D. Zhong, and W. Liu, “Topological plasmonic modes in graphene coated nanowire arrays,” Opt. Quantum Electron. 51, 156 (2019).
[Crossref]

D. Zhao, D. Zhong, Y. Hu, S. Ke, and W. Liu, “Imaginary modulation inducing giant spatial Goos–Hänchen shifts in one-dimensional defective photonic lattices,” Opt. Quantum Electron. 51, 113 (2019).
[Crossref]

D. Zhao, W. Liu, S. Ke, and Q. Liu, “Large lateral shift in complex dielectric multilayers with nearly parity–time symmetry,” Opt. Quantum Electron. 50, 323 (2018).
[Crossref]

Q. Liu, S. Ke, and W. Liu, “Mode conversion and absorption in an optical waveguide under cascaded complex modulations,” Opt. Quantum Electron. 50, 356 (2018).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Liu, W.-T.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Liu, X. P.

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

Long, H.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
[Crossref]

Z. Wang, B. Wang, H. Long, K. Wang, and P. Lu, “Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays,” J. Lightwave Technol. 35, 2960–2965 (2017).
[Crossref]

Lu, M. H.

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Lu, P.

Lu, P. X.

D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
[Crossref]

Makris, K. G.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Martinez-Moreno, E.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Menendez, J.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

Meng, P.

P. Meng, D. Zhao, D. Zhong, and W. Liu, “Topological plasmonic modes in graphene coated nanowire arrays,” Opt. Quantum Electron. 51, 156 (2019).
[Crossref]

Mikhailov, S. A.

S. A. Mikhailov, “Comment on ‘Graphene—a rather ordinary nonlinear optical material’ [Appl. Phys. Lett. 104, 161116 (2014)],” Appl. Phys. Lett. 111, 106101 (2017).
[Crossref]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Mikhailow, S. A.

S. A. Mikhailow, “Non-linear electromagnetic response of graphene,” Europhys. Lett. 79, 27002 (2007).
[Crossref]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Monticone, F.

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref]

Mossakowska-Wyszynska, A.

P. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of nonlinear loss and gain in multilayer PT-symmetric Bragg grating,” IEEE J. Quantum Electron. 53, 2100111 (2017).
[Crossref]

Nihei, H.

H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
[Crossref]

Nowak, D.

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

O’Brien, S.

N. Brandonisio, P. Heinricht, S. Osborne, A. Amann, and S. O’Brien, “Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback,” IEEE Photon. J. 4, 95–103 (2012).
[Crossref]

Okamoto, A.

H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
[Crossref]

Oliveira, J. E. B.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Osborne, S.

N. Brandonisio, P. Heinricht, S. Osborne, A. Amann, and S. O’Brien, “Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback,” IEEE Photon. J. 4, 95–103 (2012).
[Crossref]

Page, J. B.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

Park, S.

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

Peres, N. M. R.

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).
[Crossref]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
[Crossref]

Poschmann, M.

I. Al-Naib, M. Poschmann, and M. M. Dignam, “Optimizing third-harmonic generation at terahertz frequencies in graphene,” Phys. Rev. B 91, 205407 (2015).
[Crossref]

Poweleit, C.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

Ramezani, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Reimann, K.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Rubio, J.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

Rüter, C. E.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Sakhari, M.

M. Sakhari, N. Estakhri, H. Bagci, and P. Y. Chen, “Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures,” Phys. Rev. Appl. 10, 024030 (2018).
[Crossref]

Sakhdari, M.

M. Sakhdari, M. Farhat, and P. Y. Chen, “PT-symmetric metasurfaces: wave manipulation and sensing using singular points,” New J. Phys. 19, 065002 (2017).
[Crossref]

Sanderson, M.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

Santos, J. E.

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).
[Crossref]

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Savoia, S.

S. Savoia, G. Castaldi, V. Galdi, A. Alú, and N. Engheta, “Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers,” Phys. Rev. B 89, 085105 (2014).
[Crossref]

Scherer, A.

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Segev, M.

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

Shadrivov, I. V.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Shan, Y.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Shareef, S.

Shen, Y.-R.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Shi, L.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Shramkova, O. V.

O. V. Shramkova and G. P. Tsironis, “Scattering properties of PT-symmetric layered periodic structures,” J. Opt. 18, 105101 (2016).
[Crossref]

Sipe, J. E.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

I. Al-Naib, J. E. Sipe, and M. M. Dignam, “High harmonic generation in undoped graphene: interplay of inter-and intraband dynamics,” Phys. Rev. B 90, 245423 (2014).
[Crossref]

Smirnov, A. I.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Smirnova, D. A.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Soljacic, M.

M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003).
[Crossref]

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[Crossref]

Song, H.

W. Li, Y. Jiang, C. Li, and H. Song, “Parity-time-symmetry enhanced optomechanically-induced-transparency,” Sci. Rep. 6, 31095 (2016).
[Crossref]

Song, Y.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Szczepanski, P.

P. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of nonlinear loss and gain in multilayer PT-symmetric Bragg grating,” IEEE J. Quantum Electron. 53, 2100111 (2017).
[Crossref]

Tamaya, T.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356, 736–738 (2017).
[Crossref]

Tanaka, K.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356, 736–738 (2017).
[Crossref]

Tang, D.

Y. Xiang, X. Dai, J. Guo, S. Wen, and D. Tang, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Tian, M.

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

Tsironis, G. P.

O. V. Shramkova and G. P. Tsironis, “Scattering properties of PT-symmetric layered periodic structures,” J. Opt. 18, 105101 (2016).
[Crossref]

van der Meulen, H. P.

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

Vasilevskiy, M. I.

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).
[Crossref]

Vermeulen, N.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

Wang, B.

S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, “Topological bound modes in anti-PT-symmetric optical waveguide arrays,” Opt. Express 27, 13858–13870 (2019).
[Crossref]

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26, 2817–2828 (2018).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
[Crossref]

Z. Wang, B. Wang, H. Long, K. Wang, and P. Lu, “Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays,” J. Lightwave Technol. 35, 2960–2965 (2017).
[Crossref]

Wang, K.

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
[Crossref]

Z. Wang, B. Wang, H. Long, K. Wang, and P. Lu, “Surface plasmonic lattice solitons in semi-infinite graphene sheet arrays,” J. Lightwave Technol. 35, 2960–2965 (2017).
[Crossref]

Wang, R.

Wang, S. Y.

X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
[Crossref]

Wang, Z.

Wang, Z. Q.

D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
[Crossref]

Wen, S.

Y. Xiang, X. Dai, J. Guo, S. Wen, and D. Tang, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Wen, Z.

Z. Wen and Z. Yan, “Dynamical behaviors of optical solitons in parity–time (PT) symmetric sextic anharmonic double-well potentials,” Phys. Lett. A 379, 2025–2029 (2015).
[Crossref]

Witonski, P.

P. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of nonlinear loss and gain in multilayer PT-symmetric Bragg grating,” IEEE J. Quantum Electron. 53, 2100111 (2017).
[Crossref]

Woerner, M.

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

Wright, A. R.

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[Crossref]

Wu, L.

Wu, S.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Wu, Y.

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

Xiang, Y.

L. Jiang, J. Guo, L. Wu, X. Dai, and Y. Xiang, “Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene,” Opt. Express 23, 31181–31191 (2015).
[Crossref]

Y. Xiang, X. Dai, J. Guo, S. Wen, and D. Tang, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Xu, S.

Xu, X. G.

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[Crossref]

Xu, Y. L.

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Yan, Z.

Z. Wen and Z. Yan, “Dynamical behaviors of optical solitons in parity–time (PT) symmetric sextic anharmonic double-well potentials,” Phys. Lett. A 379, 2025–2029 (2015).
[Crossref]

Yanik, M. F.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Yi, Y.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Yoshikawa, N.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356, 736–738 (2017).
[Crossref]

Zeng, C.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Zhai, C.

C. Zhai, Y. Zhang, and Q. Zhang, “Characterizing the ellipticity of an isolated attosecond pulse,” Opt. Commun. 437, 104–109 (2019).
[Crossref]

Zhang, C.

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

S. Shareef, Y. S. Ang, and C. Zhang, “Room-temperature strong terahertz photon mixing in graphene,” J. Opt. Soc. Am. B 29, 274–279 (2012).
[Crossref]

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[Crossref]

Zhang, H. F.

X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
[Crossref]

Zhang, P.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

Zhang, Q.

Zhang, Y.

C. Zhai, Y. Zhang, and Q. Zhang, “Characterizing the ellipticity of an isolated attosecond pulse,” Opt. Commun. 437, 104–109 (2019).
[Crossref]

Zhang, Z.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

Zhao, D.

P. Meng, D. Zhao, D. Zhong, and W. Liu, “Topological plasmonic modes in graphene coated nanowire arrays,” Opt. Quantum Electron. 51, 156 (2019).
[Crossref]

S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, “Topological bound modes in anti-PT-symmetric optical waveguide arrays,” Opt. Express 27, 13858–13870 (2019).
[Crossref]

D. Zhao, D. Zhong, Y. Hu, S. Ke, and W. Liu, “Imaginary modulation inducing giant spatial Goos–Hänchen shifts in one-dimensional defective photonic lattices,” Opt. Quantum Electron. 51, 113 (2019).
[Crossref]

D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26, 2817–2828 (2018).
[Crossref]

D. Zhao, W. Liu, S. Ke, and Q. Liu, “Large lateral shift in complex dielectric multilayers with nearly parity–time symmetry,” Opt. Quantum Electron. 50, 323 (2018).
[Crossref]

D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
[Crossref]

Zhao, T.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

Zhong, D.

P. Meng, D. Zhao, D. Zhong, and W. Liu, “Topological plasmonic modes in graphene coated nanowire arrays,” Opt. Quantum Electron. 51, 156 (2019).
[Crossref]

D. Zhao, D. Zhong, Y. Hu, S. Ke, and W. Liu, “Imaginary modulation inducing giant spatial Goos–Hänchen shifts in one-dimensional defective photonic lattices,” Opt. Quantum Electron. 51, 113 (2019).
[Crossref]

Zhong, R.

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

Zhou, Y.

Zhu, X. F.

Zi, J.

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

ACS Nano (1)

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[Crossref]

Adv. Funct. Mater. (1)

W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, and P. Lu, “Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure,” Adv. Funct. Mater. 28, 1707550 (2018).
[Crossref]

Appl. Phys. Lett. (6)

M. Sanderson, Y. S. Ang, S. Gong, T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, C. Zhang, and S. Liu, “Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime,” Appl. Phys. Lett. 107, 203113 (2015).
[Crossref]

J. He and M. Cada, “Combined distributed feedback and Fabry–Perot structures with a phase-matching layer for optical bistable devices,” Appl. Phys. Lett. 61, 2150–2152 (1992).
[Crossref]

Y. Xiang, X. Dai, J. Guo, S. Wen, and D. Tang, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[Crossref]

S. A. Mikhailov, “Comment on ‘Graphene—a rather ordinary nonlinear optical material’ [Appl. Phys. Lett. 104, 161116 (2014)],” Appl. Phys. Lett. 111, 106101 (2017).
[Crossref]

J. B. Khurgin, “Response to ‘Comment on “Graphene—a rather ordinary nonlinear optical material”’ [Appl. Phys. Lett. 111, 106101 (2017)],” Appl. Phys. Lett. 111, 106102 (2017).
[Crossref]

Europhys. Lett. (1)

S. A. Mikhailow, “Non-linear electromagnetic response of graphene,” Europhys. Lett. 79, 27002 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Witoński, A. Mossakowska-Wyszyńska, and P. Szczepański, “Effect of nonlinear loss and gain in multilayer PT-symmetric Bragg grating,” IEEE J. Quantum Electron. 53, 2100111 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. K. Kong, S. B. Liu, H. F. Zhang, S. Y. Wang, B. R. Bian, and Y. Dai, “Tunable bistability in photonic multilayers doped by unmagnetized plasma and coupled nonlinear defects,” IEEE J. Sel. Top. Quantum Electron. 19, 8401407 (2013).
[Crossref]

IEEE Photon. J. (1)

N. Brandonisio, P. Heinricht, S. Osborne, A. Amann, and S. O’Brien, “Bistability and all-optical memory in dual-mode diode lasers with time-delayed optical feedback,” IEEE Photon. J. 4, 95–103 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

O. V. Shramkova and G. P. Tsironis, “Scattering properties of PT-symmetric layered periodic structures,” J. Opt. 18, 105101 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

J. Liu, S. Park, D. Nowak, M. Tian, Y. Wu, H. Long, K. Wang, B. Wang, and P. Lu, “Near-field characterization of graphene plasmons by photo-induced force microscopy,” Laser Photon. Rev. 12, 1800040 (2018).
[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Nat. Commun. (1)

Y. L. Xu, W. S. Fegadolli, L. Gan, M. H. Lu, X. P. Liu, Z. Y. Li, A. Scherer, and Y. F. Chen, “Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice,” Nat. Commun. 7, 11319 (2016).
[Crossref]

Nat. Mater. (1)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2013).
[Crossref]

Nat. Photonics (2)

T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi, Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen, W.-T. Liu, and S. Wu, “Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene,” Nat. Photonics 12, 430–436 (2018).
[Crossref]

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity–time symmetry,” Nat. Photonics 11, 752–762 (2017).
[Crossref]

Nat. Phys. (1)

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity–time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).
[Crossref]

New J. Phys. (2)

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
[Crossref]

M. Sakhdari, M. Farhat, and P. Y. Chen, “PT-symmetric metasurfaces: wave manipulation and sensing using singular points,” New J. Phys. 19, 065002 (2017).
[Crossref]

Opt. Commun. (1)

C. Zhai, Y. Zhang, and Q. Zhang, “Characterizing the ellipticity of an isolated attosecond pulse,” Opt. Commun. 437, 104–109 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (5)

D. Zhao, Z. Q. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, “Optical bistability in defective photonic multilayers doped by graphene,” Opt. Quantum Electron. 49, 163 (2017).
[Crossref]

P. Meng, D. Zhao, D. Zhong, and W. Liu, “Topological plasmonic modes in graphene coated nanowire arrays,” Opt. Quantum Electron. 51, 156 (2019).
[Crossref]

D. Zhao, W. Liu, S. Ke, and Q. Liu, “Large lateral shift in complex dielectric multilayers with nearly parity–time symmetry,” Opt. Quantum Electron. 50, 323 (2018).
[Crossref]

Q. Liu, S. Ke, and W. Liu, “Mode conversion and absorption in an optical waveguide under cascaded complex modulations,” Opt. Quantum Electron. 50, 356 (2018).
[Crossref]

D. Zhao, D. Zhong, Y. Hu, S. Ke, and W. Liu, “Imaginary modulation inducing giant spatial Goos–Hänchen shifts in one-dimensional defective photonic lattices,” Opt. Quantum Electron. 51, 113 (2019).
[Crossref]

Phys. Lett. A (1)

Z. Wen and Z. Yan, “Dynamical behaviors of optical solitons in parity–time (PT) symmetric sextic anharmonic double-well potentials,” Phys. Lett. A 379, 2025–2029 (2015).
[Crossref]

Phys. Rev. Appl. (2)

M. Sakhari, N. Estakhri, H. Bagci, and P. Y. Chen, “Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures,” Phys. Rev. Appl. 10, 024030 (2018).
[Crossref]

P. Y. Chen and J. Jung, “PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces,” Phys. Rev. Appl. 5, 064018 (2016).
[Crossref]

Phys. Rev. B (7)

P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, and M. Woerner, “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime,” Phys. Rev. B 89, 041408 (2014).
[Crossref]

I. Al-Naib, J. E. Sipe, and M. M. Dignam, “High harmonic generation in undoped graphene: interplay of inter-and intraband dynamics,” Phys. Rev. B 90, 245423 (2014).
[Crossref]

I. Al-Naib, M. Poschmann, and M. M. Dignam, “Optimizing third-harmonic generation at terahertz frequencies in graphene,” Phys. Rev. B 91, 205407 (2015).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
[Crossref]

S. Savoia, G. Castaldi, V. Galdi, A. Alú, and N. Engheta, “Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers,” Phys. Rev. B 89, 085105 (2014).
[Crossref]

M. Canonico, G. B. Adams, C. Poweleit, J. Menendez, J. B. Page, G. Harris, H. P. van der Meulen, J. M. Calleja, and J. Rubio, “Characterization of carbon nanotubes using Raman excitation profiles,” Phys. Rev. B 65, 201402 (2002).
[Crossref]

N. M. R. Peres, Y. V. Bludov, J. E. Santos, A. P. Jauho, and M. I. Vasilevskiy, “Optical bistability of graphene in the terahertz range,” Phys. Rev. B 90, 125425 (2014).
[Crossref]

Phys. Rev. E (1)

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[Crossref]

Phys. Rev. Lett. (3)

C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012).
[Crossref]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[Crossref]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011).
[Crossref]

Proc. SPIE (1)

H. Nihei and A. Okamoto, “Photonic crystal systems for high-speed optical memory device on an atomic scale,” Proc. SPIE 4416, 470–473 (2001).
[Crossref]

Sci. Rep. (1)

W. Li, Y. Jiang, C. Li, and H. Song, “Parity-time-symmetry enhanced optomechanically-induced-transparency,” Sci. Rep. 6, 31095 (2016).
[Crossref]

Science (1)

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356, 736–738 (2017).
[Crossref]

Other (2)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of PT-symmetric photonic lattices incorporated with graphene. For dielectrics A, B, A, and B, the thicknesses are a quarter of optical wavelength. The graphene is embedded in the center of defect layer C. The refractive indices of dielectrics A, B, A, B, and C are na=1.38+iq, nb=2.35iq, na=1.38iq, nb=2.35+iq, and nc=1.5, respectively.
Fig. 2.
Fig. 2. (a), (b) Transmittance and reflectance spectrum for three different Bragg periodic numbers N=3, 4, and 5, respectively. (c) Electric field intensity (|Ez|2) distribution of the DM for N=4. The incident wavelength is λ=30.68μm. The chemical potential of graphene is μ=0.15eV in (a)–(c).
Fig. 3.
Fig. 3. (a), (b) Dependence of transmittance and transmitted intensity on incident light intensity for three different Bragg periodic numbers, respectively. The wavelength of incidence light λ=30.9μm.
Fig. 4.
Fig. 4. (a) Reflectance of light incident from the left. (b) Reflectance of light incident from the right. (c) Transmittance of light. (d) Q factor of PT-symmetric photonic lattices and EPs splitting. The Bragg periodic number N=4.
Fig. 5.
Fig. 5. (a), (c) Dependence of transmittance and transmitted intensity on the gain-loss factor and the incident intensity of light, respectively. (b) The maximum of transmittance and corresponding incident intensity varying with the gain-loss factor. (d) Bistability threshold varying with the gain-loss factor. (a)–(d) are with the incident wavelength λ=31μm. The Bragg periodic number N=4, and the chemical potential μ=0.15eV.
Fig. 6.
Fig. 6. (a) Upper and lower thresholds of bistability varying with the wavelength of incident light. The Bragg periodic number N=4, and the gain-loss factor q=0.1. (b) Phase transition of bistability to nonbistability in the parameter space spanned by the wavelength detuning and gain-loss factor.
Fig. 7.
Fig. 7. (a) Phase transition of bistability to nonbistability in the parameter space of the chemical potential and gain-loss factor. (b), (c), (d) Bistability threshold varying with the chemical potential for three different gain-loss factors q=0, 0.05, and 0.1, respectively. The wavelength of incident light λ=31μm.
Fig. 8.
Fig. 8. (a), (b), (d), (e) Transmittance and reflectance for light impinging upon the PT-symmetric photonic lattices, respectively. (c) Electric field intensity (|Ez|2) distribution of CPA laser state. Gain is only considered in dielectrics for (a)–(c), while loss is only included in dielectrics for (d) and (e).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ(1)(ω,μ,τ,T)=ie2(ω+iτ1)π2[+|ε|(ω+iτ1)2fd(ε)εdε0+fd(ε)fd(ε)(ω+iτ1)24(ε/)2dε],
σintra=ie2kBTπ2(ω+iτ1)[μkBT+2ln(exp(μckBT)+1)].
σinter=ie24πln[2|μ|(ω+iτ1)2|μ|+(ω+iτ1)].
(ElHl)=(cosϕliηlsinϕliηlsinϕlcosϕl)(El+1Hl+1),
t=2η1m11η1+m12η1ηN+1+m21+m22η1,
r=m11η1+m12η1ηN+1m21m22ηN+1m11η1+m12η1ηN+1+m21+m22ηN+1,

Metrics