Abstract

We introduce a new approach, to the best of our knowledge, to record polarization gratings (PGs) based on dual rotating polarization grating masks. In prior approaches, the linear variation of the orientation angle of the PG pattern was accomplished using discrete holographic optics, which require careful precision alignment, and wherein the relative distances between those optics limit the upper range of PG periods that can be made. Conversely, the setup described and demonstrated here as a single stage is very compact and more robust to vibration compared to other approaches. Moreover, this approach can easily tune the PG period while maintaining the compact size of the setup. This technique enables easy fabrication of arbitrarily large-period PGs. In this work, we discuss general design principles and critically evaluate this fabrication method, as compared to the best of prior approaches.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale liquid crystal polymer Bragg polarization gratings

Xiao Xiang, Jihwan Kim, Ravi Komanduri, and Michael J. Escuti
Opt. Express 25(16) 19298-19308 (2017)

Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings

Jihwan Kim, Chulwoo Oh, Steve Serati, and Michael J. Escuti
Appl. Opt. 50(17) 2636-2639 (2011)

Numerical analysis of Bragg polarization gratings

Xiao Xiang and Michael J. Escuti
J. Opt. Soc. Am. B 36(5) D1-D8 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
    [Crossref]
  2. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25, 785–786 (2000).
    [Crossref]
  3. J. Anandan, “The geometric phase,” Nature 360, 307–313 (1992).
    [Crossref]
  4. R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1–64 (1997).
    [Crossref]
  5. R. W. Batterman, “Falling cats, parallel parking, and polarized light,” Stud. Hist. Philos. Sci. B 34, 527–557 (2003).
    [Crossref]
  6. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
    [Crossref]
  7. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A 392, 45–57 (1984).
    [Crossref]
  8. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
    [Crossref]
  9. Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
    [Crossref]
  10. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  11. T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
    [Crossref]
  12. G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
    [Crossref]
  13. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
    [Crossref]
  14. X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47, 93–98 (2008).
    [Crossref]
  15. M. J. Escuti, “Methods of fabricating liquid crystal polarization gratings on substrates and related devices,” U.S. patent application 60/912,036 (April16, 2007).
  16. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48, 4062–4067 (2009).
    [Crossref]
  17. M. J. Escuti, “Methods of fabricating liquid crystal polarization gratings on substrates and related devices,” U.S. patent8,358,400 (January22, 2013).
  18. N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays,” U.S. patent application 13/860,934 (April11, 2013).
  19. Z. He, Y. Lee, R. Chen, D. Chanda, and S. T. Wu, “Switchable Pancharatnam–Berry microlens array with nano-imprinted liquid crystal alignment,” Opt. Lett. 43, 5062–5065 (2018).
    [Crossref]
  20. M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22, 12691–12706 (2014).
    [Crossref]
  21. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
    [Crossref]
  22. L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24, 18297–18306 (2016).
    [Crossref]
  23. J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).
  24. M. Honmaand and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
    [Crossref]
  25. J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
    [Crossref]
  26. J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
    [Crossref]
  27. J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high-throughput utilizing polarization gratings,” Appl. Opt. 50, 2636–2639 (2011).
    [Crossref]
  28. C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
    [Crossref]
  29. Y. Zhou, D. Fan, S. Fan, Y. Chen, and G. Liu, “Laser scanning by rotating polarization gratings,” Appl. Opt. 55, 5149–5157 (2016).
    [Crossref]
  30. J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration,” J. Lightwave Technol. 33, 2068–2077 (2015).
    [Crossref]
  31. M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
    [Crossref]
  32. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
    [Crossref]
  33. R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
    [Crossref]

2018 (1)

2017 (1)

2016 (3)

2015 (2)

2014 (1)

2013 (1)

2012 (1)

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

2011 (1)

2010 (1)

C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]

2009 (1)

2008 (3)

2006 (1)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

2005 (1)

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

2004 (1)

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]

2003 (2)

M. Honmaand and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[Crossref]

R. W. Batterman, “Falling cats, parallel parking, and polarized light,” Stud. Hist. Philos. Sci. B 34, 527–557 (2003).
[Crossref]

2002 (1)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[Crossref]

2000 (1)

1997 (1)

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1–64 (1997).
[Crossref]

1995 (1)

J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).

1992 (1)

J. Anandan, “The geometric phase,” Nature 360, 307–313 (1992).
[Crossref]

1984 (2)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A 392, 45–57 (1984).
[Crossref]

1983 (1)

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]

Aieta, F.

Anandan, J.

J. Anandan, “The geometric phase,” Nature 360, 307–313 (1992).
[Crossref]

Batterman, R. W.

R. W. Batterman, “Falling cats, parallel parking, and polarized light,” Stud. Hist. Philos. Sci. B 34, 527–557 (2003).
[Crossref]

Berry, M. V.

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A 392, 45–57 (1984).
[Crossref]

Bhandari, R.

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1–64 (1997).
[Crossref]

Biener, G.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[Crossref]

Bomzon, Z.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[Crossref]

Bos, P. J.

J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).

Bryant, D. B.

J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).

Callan-Jones, A.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Capasso, F.

Chanda, D.

Chen, J.

J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).

Chen, R.

Chen, Y.

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Crawford, G.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Crawford, G. P.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]

De Sio, L.

Devlin, R.

Eakin, J.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Eakin, J. N.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]

Escuti, M. J.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration,” J. Lightwave Technol. 33, 2068–2077 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22, 12691–12706 (2014).
[Crossref]

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
[Crossref]

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high-throughput utilizing polarization gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]

C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

M. J. Escuti, “Methods of fabricating liquid crystal polarization gratings on substrates and related devices,” U.S. patent8,358,400 (January22, 2013).

M. J. Escuti, “Methods of fabricating liquid crystal polarization gratings on substrates and related devices,” U.S. patent application 60/912,036 (April16, 2007).

Fan, D.

Fan, S.

Genevet, P.

Guo, Y.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
[Crossref]

Hasman, E.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[Crossref]

He, Z.

Honmaand, M.

M. Honmaand and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[Crossref]

Hosting, L.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Jamal, S. H.

J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).

Jiang, M.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
[Crossref]

Johnson, D. L.

J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).

Kelly, J. R.

J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).

Khorasaninejad, M.

Kim, J.

J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration,” J. Lightwave Technol. 33, 2068–2077 (2015).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high-throughput utilizing polarization gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]

C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Kimball, B.

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48, 4062–4067 (2009).
[Crossref]

N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays,” U.S. patent application 13/860,934 (April11, 2013).

Kleiner, V.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[Crossref]

Komanduri, R. K.

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
[Crossref]

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

Kudenov, M. W.

Lavrentovich, O.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
[Crossref]

Lawler, K. F.

Lee, Y.

Li, Y.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

Liao, Z.

Liu, G.

Miskiewicz, M. N.

Muth, J. F.

C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]

Nersisyan, S.

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48, 4062–4067 (2009).
[Crossref]

N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays,” U.S. patent application 13/860,934 (April11, 2013).

Nikolova, L.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]

Niv, A.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[Crossref]

Nose, T.

M. Honmaand and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[Crossref]

Oh, C.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high-throughput utilizing polarization gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]

C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[Crossref]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Pan, X.

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]

Pelcovits, R.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Pelcovits, R. A.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]

Peng, C.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
[Crossref]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Radcliffe, M. D.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]

Roberts, D. E.

Serati, S.

J. Kim, M. N. Miskiewicz, S. Serati, and M. J. Escuti, “Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration,” J. Lightwave Technol. 33, 2068–2077 (2015).
[Crossref]

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high-throughput utilizing polarization gratings,” Appl. Opt. 50, 2636–2639 (2011).
[Crossref]

C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Steeves, D. M.

Sun, K.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
[Crossref]

Tabirian, N. V.

N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays,” U.S. patent application 13/860,934 (April11, 2013).

Tabiryan, N.

Tabiryan, N. V.

Tervo, J.

Todorov, T.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]

Tomova, N.

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]

Turunen, J.

Uskova, O.

Wang, C.

Wei, Q.-H.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
[Crossref]

Wickboldt, L.

Wu, S. T.

Xie, Y.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]

Yaroshchuk, O.

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
[Crossref]

Zhang, X.

Zhou, Y.

Adv. Mater. (1)

Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28, 2353–2358 (2016).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673 (2004).
[Crossref]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Dig. Tech. Pap. (1)

J. Chen, P. J. Bos, D. B. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Four-domain TN-LCD fabricated by reverse rubbing or double evaporation,” Dig. Tech. Pap. 26, 865–868 (1995).

IEEE Photon. Technol. Lett. (1)

C. Oh, J. Kim, J. F. Muth, S. Serati, and M. J. Escuti, “High-throughput, continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22, 200–202 (2010).
[Crossref]

J. Appl. Phys. (1)

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

M. Honmaand and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[Crossref]

Nature (1)

J. Anandan, “The geometric phase,” Nature 360, 307–313 (1992).
[Crossref]

Opt. Acta (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

Opt. Commun. (2)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[Crossref]

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (2)

Phys. Rep. (1)

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281, 1–64 (1997).
[Crossref]

Proc. Indian Acad. Sci. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
[Crossref]

Proc. R. Soc. London A (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London A 392, 45–57 (1984).
[Crossref]

Proc. SPIE (2)

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

M. N. Miskiewicz, J. Kim, Y. Li, R. K. Komanduri, and M. J. Escuti, “Progress on large-area polarization grating fabrication,” Proc. SPIE 8395, 83950G (2012).
[Crossref]

Stud. Hist. Philos. Sci. B (1)

R. W. Batterman, “Falling cats, parallel parking, and polarized light,” Stud. Hist. Philos. Sci. B 34, 527–557 (2003).
[Crossref]

Other (3)

M. J. Escuti, “Methods of fabricating liquid crystal polarization gratings on substrates and related devices,” U.S. patent8,358,400 (January22, 2013).

N. V. Tabirian, S. R. Nersisyan, B. R. Kimball, and D. M. Steeves, “Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays,” U.S. patent application 13/860,934 (April11, 2013).

M. J. Escuti, “Methods of fabricating liquid crystal polarization gratings on substrates and related devices,” U.S. patent application 60/912,036 (April16, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Holographic approach. (a) PG profile created by an interference of two beams orthogonally circularly polarized: right-handed circularly polarized (RCP); left-handed circularly polarized (LCP). (b) A layout of conventional holography setup to create the PG profile, which includes mirrors (M), beam splitter (BS), and quarter-wave plates (QWP).
Fig. 2.
Fig. 2. Dual rotating mask approach described here. (a) A schematic of the setup with two rotating masks: Ψ 1 and Ψ 2 are azimuthal rotating angles of the masks. (b) Two orthogonal circular outputs from a single mask PG: θ d = sin 1 ( λ 0 / Λ ) . (c) Output from the two mask PGs generating splitting angle Θ .
Fig. 3.
Fig. 3. Operation principle of the setup with the vector representation in direction cosine space: (a) input beam separation ( G 1 R , G 1 L ) by the first mask; (b) redirection ( G 2 R , G 2 L ) of the beams by the second mask; (c) output beams ( G R , G L ) described as vector sum.
Fig. 4.
Fig. 4. Splitting angle ( Θ ) and corresponding grating period ( Λ replica ) of the replicated PG for different grating orientations ( ϕ ) of the mask when θ d = 2.5 ° and λ 0 = 325 nm .
Fig. 5.
Fig. 5. Recording setup with the two mask PGs mounted on rotation mount. Inset, output beam overlap at the sample plane when (a)  ϕ = 89 ° , Θ = 0.1 ° ; (b)  ϕ = 60 ° , Θ = 2.5 ° ; (c)  ϕ = 0 ° , Θ = 5.0 ° .
Fig. 6.
Fig. 6. First- and zero-order diffraction efficiency spectra of the PG fabricated. Inset, measured polarizing optical micrograph under crossed polarizers. They were fabricated for different periods: (a)  Λ replica = 20 μm ; (b)  Λ replica = 89 μm ; (c)  Λ replica = 178 μm (scale bars, 100 μm; 200 μm; 200 μm).

Tables (1)

Tables Icon

Table 1. Characterization Data of the PGs Fabricated at 633 nm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 2 sin θ ,
α = sin θ d [ cos Ψ 1 cos Ψ 2 ] ,
β = sin θ d [ sin Ψ 1 sin Ψ 2 ] ,
γ = 1 α 2 β 2 ,
Θ = cos 1 γ ,
= cos 1 ( 1 4 sin 2 θ d cos 2 ϕ ) .
Λ replica = λ 0 2 sin Θ ,