M. F. O. Hameed, S. S. A. Obayya, K.
Al-Begain, A. M. Nasr, and M. I. Abo El Maaty, “Accurate
radial basis function based neural network approach for analysis
of photonic crystal fibers,” Opt. Quantum Electron. 40,
891–905 (2009).

[Crossref]

T. Abreu-Cerqueira, A. Dourado-Sisnando,
and V. F. Rodriguez-Esquerre, “Analysis and design of
directional couplers based on AlxGa1–xAs by using an
efficient neural networks: a design tool simulation implemented in
C/C++,” in SBMO/IEEE MTT-S International Microwave and
Optoelectronics Conference (IMOC) (IEEE, 2011),
pp. 881–885.

M. F. O. Hameed, S. S. A. Obayya, K.
Al-Begain, A. M. Nasr, and M. I. Abo El Maaty, “Accurate
radial basis function based neural network approach for analysis
of photonic crystal fibers,” Opt. Quantum Electron. 40,
891–905 (2009).

[Crossref]

M. K. Smit, E. C. Pennings, and H. Blok,
“Normalized approach to the design of low-loss optical
waveguide bends,” J. Lightwave Technol. 11,
1737–1742 (1993).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

L. Chrostowski and M. Hochberg, Silicon
Photonics Design (Cambridge University, 2015).

R. Syms and J. Cozens, Optical Guided
Waves and Devices (McGraw-Hill, 1992).

Q.-J. Zhang, K. Gupta, and V.
Devabhaktuni, “Artificial neural networks for RF and
microwave design-from theory to practice,” IEEE Trans.
Microwave Theory Tech. 51, 1339–1350
(2003).

[Crossref]

F. Wang, V. K. Devabhaktuni, C. Xi, and
Q.-J. Zhang, “Neural network structures and training
algorithms for RF and microwave applications,” Int. J. RF
Microwave Comput. Aid. Eng. 9, 216–240
(1999).

[Crossref]

T. Abreu-Cerqueira, A. Dourado-Sisnando,
and V. F. Rodriguez-Esquerre, “Analysis and design of
directional couplers based on AlxGa1–xAs by using an
efficient neural networks: a design tool simulation implemented in
C/C++,” in SBMO/IEEE MTT-S International Microwave and
Optoelectronics Conference (IMOC) (IEEE, 2011),
pp. 881–885.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

Q.-J. Zhang, K. Gupta, and V.
Devabhaktuni, “Artificial neural networks for RF and
microwave design-from theory to practice,” IEEE Trans.
Microwave Theory Tech. 51, 1339–1350
(2003).

[Crossref]

Q. J. Zhang and K. C. Gupta, Neural
Networks for RF and Microwave Design (Book + Neuromodeler Disk),
1st ed. (Artech House, 2000).

M. F. O. Hameed, S. S. A. Obayya, K.
Al-Begain, A. M. Nasr, and M. I. Abo El Maaty, “Accurate
radial basis function based neural network approach for analysis
of photonic crystal fibers,” Opt. Quantum Electron. 40,
891–905 (2009).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

L. Chrostowski and M. Hochberg, Silicon
Photonics Design (Cambridge University, 2015).

S. Molesky, Z. Lin, A. Y. Piggott, W.
Jin, J. Vuckovic, and A. W. Rodriguez, “Inverse design in
nanophotonics,” Nat. Photonics 12, 659–670
(2018).

[Crossref]

H. Kabir, Y. Wang, M. Yu, and Q. Zhang,
“Neural network inverse modeling and applications to
microwave filter design,” IEEE Trans. Microwave Theory
Tech. 56, 867–879 (2008).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

M. M. Vai, S. Wu, B. Li, and S. Prasad,
“Reverse modeling of microwave circuits with bidirectional
neural network models,” IEEE Trans. Microwave Theory Tech.
46, 1492–1494 (1998).

[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W.
Jin, J. Vuckovic, and A. W. Rodriguez, “Inverse design in
nanophotonics,” Nat. Photonics 12, 659–670
(2018).

[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W.
Jin, J. Vuckovic, and A. W. Rodriguez, “Inverse design in
nanophotonics,” Nat. Photonics 12, 659–670
(2018).

[Crossref]

M. F. O. Hameed, S. S. A. Obayya, K.
Al-Begain, A. M. Nasr, and M. I. Abo El Maaty, “Accurate
radial basis function based neural network approach for analysis
of photonic crystal fibers,” Opt. Quantum Electron. 40,
891–905 (2009).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

M. F. O. Hameed, S. S. A. Obayya, K.
Al-Begain, A. M. Nasr, and M. I. Abo El Maaty, “Accurate
radial basis function based neural network approach for analysis
of photonic crystal fibers,” Opt. Quantum Electron. 40,
891–905 (2009).

[Crossref]

L. B. Soldano and E. C. Pennings,
“Optical multi-mode interference devices based on
self-imaging: principles and applications,” J. Lightwave
Technol. 13, 615–627 (1995).

[Crossref]

M. K. Smit, E. C. Pennings, and H. Blok,
“Normalized approach to the design of low-loss optical
waveguide bends,” J. Lightwave Technol. 11,
1737–1742 (1993).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W.
Jin, J. Vuckovic, and A. W. Rodriguez, “Inverse design in
nanophotonics,” Nat. Photonics 12, 659–670
(2018).

[Crossref]

M. M. Vai, S. Wu, B. Li, and S. Prasad,
“Reverse modeling of microwave circuits with bidirectional
neural network models,” IEEE Trans. Microwave Theory Tech.
46, 1492–1494 (1998).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W.
Jin, J. Vuckovic, and A. W. Rodriguez, “Inverse design in
nanophotonics,” Nat. Photonics 12, 659–670
(2018).

[Crossref]

T. Abreu-Cerqueira, A. Dourado-Sisnando,
and V. F. Rodriguez-Esquerre, “Analysis and design of
directional couplers based on AlxGa1–xAs by using an
efficient neural networks: a design tool simulation implemented in
C/C++,” in SBMO/IEEE MTT-S International Microwave and
Optoelectronics Conference (IMOC) (IEEE, 2011),
pp. 881–885.

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

M. K. Smit, E. C. Pennings, and H. Blok,
“Normalized approach to the design of low-loss optical
waveguide bends,” J. Lightwave Technol. 11,
1737–1742 (1993).

[Crossref]

L. B. Soldano and E. C. Pennings,
“Optical multi-mode interference devices based on
self-imaging: principles and applications,” J. Lightwave
Technol. 13, 615–627 (1995).

[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

R. Syms and J. Cozens, Optical Guided
Waves and Devices (McGraw-Hill, 1992).

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

K. Yao, R. Unni, and Y. Zheng,
“Intelligent nanophotonics: merging photonics and
artificial intelligence at the nanoscale,” arXiv:1810.11709
(2018).

M. M. Vai, S. Wu, B. Li, and S. Prasad,
“Reverse modeling of microwave circuits with bidirectional
neural network models,” IEEE Trans. Microwave Theory Tech.
46, 1492–1494 (1998).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W.
Jin, J. Vuckovic, and A. W. Rodriguez, “Inverse design in
nanophotonics,” Nat. Photonics 12, 659–670
(2018).

[Crossref]

S. W. S. Wan, L. Z. L. Zhang, and Q. Z.
Q. Zhang, “Application of artificial neural networks for
electromagnetic modeling and computational
electromagnetics,” in 51st Midwest Symposium on Circuits
and Systems (2008), pp. 743–746.

F. Wang, V. K. Devabhaktuni, C. Xi, and
Q.-J. Zhang, “Neural network structures and training
algorithms for RF and microwave applications,” Int. J. RF
Microwave Comput. Aid. Eng. 9, 216–240
(1999).

[Crossref]

H. Kabir, Y. Wang, M. Yu, and Q. Zhang,
“Neural network inverse modeling and applications to
microwave filter design,” IEEE Trans. Microwave Theory
Tech. 56, 867–879 (2008).

[Crossref]

M. M. Vai, S. Wu, B. Li, and S. Prasad,
“Reverse modeling of microwave circuits with bidirectional
neural network models,” IEEE Trans. Microwave Theory Tech.
46, 1492–1494 (1998).

[Crossref]

F. Wang, V. K. Devabhaktuni, C. Xi, and
Q.-J. Zhang, “Neural network structures and training
algorithms for RF and microwave applications,” Int. J. RF
Microwave Comput. Aid. Eng. 9, 216–240
(1999).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

K. Yao, R. Unni, and Y. Zheng,
“Intelligent nanophotonics: merging photonics and
artificial intelligence at the nanoscale,” arXiv:1810.11709
(2018).

H. Kabir, Y. Wang, M. Yu, and Q. Zhang,
“Neural network inverse modeling and applications to
microwave filter design,” IEEE Trans. Microwave Theory
Tech. 56, 867–879 (2008).

[Crossref]

S. W. S. Wan, L. Z. L. Zhang, and Q. Z.
Q. Zhang, “Application of artificial neural networks for
electromagnetic modeling and computational
electromagnetics,” in 51st Midwest Symposium on Circuits
and Systems (2008), pp. 743–746.

H. Kabir, Y. Wang, M. Yu, and Q. Zhang,
“Neural network inverse modeling and applications to
microwave filter design,” IEEE Trans. Microwave Theory
Tech. 56, 867–879 (2008).

[Crossref]

Q. J. Zhang and K. C. Gupta, Neural
Networks for RF and Microwave Design (Book + Neuromodeler Disk),
1st ed. (Artech House, 2000).

S. W. S. Wan, L. Z. L. Zhang, and Q. Z.
Q. Zhang, “Application of artificial neural networks for
electromagnetic modeling and computational
electromagnetics,” in 51st Midwest Symposium on Circuits
and Systems (2008), pp. 743–746.

Q.-J. Zhang, K. Gupta, and V.
Devabhaktuni, “Artificial neural networks for RF and
microwave design-from theory to practice,” IEEE Trans.
Microwave Theory Tech. 51, 1339–1350
(2003).

[Crossref]

F. Wang, V. K. Devabhaktuni, C. Xi, and
Q.-J. Zhang, “Neural network structures and training
algorithms for RF and microwave applications,” Int. J. RF
Microwave Comput. Aid. Eng. 9, 216–240
(1999).

[Crossref]

K. Yao, R. Unni, and Y. Zheng,
“Intelligent nanophotonics: merging photonics and
artificial intelligence at the nanoscale,” arXiv:1810.11709
(2018).

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X.
Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow,
“Review of silicon photonics foundry efforts,” IEEE
J. Sel. Top. Quantum Electron. 20, 405–416
(2014).

[Crossref]

Q.-J. Zhang, K. Gupta, and V.
Devabhaktuni, “Artificial neural networks for RF and
microwave design-from theory to practice,” IEEE Trans.
Microwave Theory Tech. 51, 1339–1350
(2003).

[Crossref]

H. Kabir, Y. Wang, M. Yu, and Q. Zhang,
“Neural network inverse modeling and applications to
microwave filter design,” IEEE Trans. Microwave Theory
Tech. 56, 867–879 (2008).

[Crossref]

M. M. Vai, S. Wu, B. Li, and S. Prasad,
“Reverse modeling of microwave circuits with bidirectional
neural network models,” IEEE Trans. Microwave Theory Tech.
46, 1492–1494 (1998).

[Crossref]

F. Wang, V. K. Devabhaktuni, C. Xi, and
Q.-J. Zhang, “Neural network structures and training
algorithms for RF and microwave applications,” Int. J. RF
Microwave Comput. Aid. Eng. 9, 216–240
(1999).

[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts,
D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of
photonic wire and crystal circuits in silicon-on-insulator using
193-nm optical lithography,” J. Lightwave Technol. 27,
4076–4083 (2009).

[Crossref]

M. K. Smit, E. C. Pennings, and H. Blok,
“Normalized approach to the design of low-loss optical
waveguide bends,” J. Lightwave Technol. 11,
1737–1742 (1993).

[Crossref]

L. B. Soldano and E. C. Pennings,
“Optical multi-mode interference devices based on
self-imaging: principles and applications,” J. Lightwave
Technol. 13, 615–627 (1995).

[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T.
Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan,
L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H.
Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich,
and M. Nedeljkovic, “Roadmap on silicon photonics,”
J. Opt. 18, 073003 (2016).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W.
Jin, J. Vuckovic, and A. W. Rodriguez, “Inverse design in
nanophotonics,” Nat. Photonics 12, 659–670
(2018).

[Crossref]

M. F. O. Hameed, S. S. A. Obayya, K.
Al-Begain, A. M. Nasr, and M. I. Abo El Maaty, “Accurate
radial basis function based neural network approach for analysis
of photonic crystal fibers,” Opt. Quantum Electron. 40,
891–905 (2009).

[Crossref]

K. Yao, R. Unni, and Y. Zheng,
“Intelligent nanophotonics: merging photonics and
artificial intelligence at the nanoscale,” arXiv:1810.11709
(2018).

R. Syms and J. Cozens, Optical Guided
Waves and Devices (McGraw-Hill, 1992).

L. Chrostowski and M. Hochberg, Silicon
Photonics Design (Cambridge University, 2015).

Q. J. Zhang and K. C. Gupta, Neural
Networks for RF and Microwave Design (Book + Neuromodeler Disk),
1st ed. (Artech House, 2000).

S. W. S. Wan, L. Z. L. Zhang, and Q. Z.
Q. Zhang, “Application of artificial neural networks for
electromagnetic modeling and computational
electromagnetics,” in 51st Midwest Symposium on Circuits
and Systems (2008), pp. 743–746.

T. Abreu-Cerqueira, A. Dourado-Sisnando,
and V. F. Rodriguez-Esquerre, “Analysis and design of
directional couplers based on AlxGa1–xAs by using an
efficient neural networks: a design tool simulation implemented in
C/C++,” in SBMO/IEEE MTT-S International Microwave and
Optoelectronics Conference (IMOC) (IEEE, 2011),
pp. 881–885.

OptiFDTD, https://www.optiwave.com
.

Lumerical FDTD Solutions,
https://www.lumerical.com .

COMSOL Multiphysics,
https://www.comsol.com .