Abstract

Optical and electrical features of Cu2O solar cells from simple primitive bufferless AZO/Cu2O to complex single/double layer-antireflection coating (S/DLARC) on back-surface fluorine-doped tin oxide (BSF/FTO), were numerically studied. The simulated cells were optimized using a low-conduction band offset buffer, controlled-defect BSF, and antireflection coating layers under a compatible fabrication process. By considering the interlayer defects, the optimized DLARC/AZO/buffer/Cu2O/CuO on BSF/FTO exhibits an improved efficiency of 9.17%, with a JSC11.45mA/cm2, a VOC1.191V, and a fill factor of 67.22% under simulated illumination (AM 1.5G, 100mW/cm2). Finally, the cell underwent simulated moisturized conditions (RH=90% at T=60°C), where its performance dramatically declined with the exposure time. The results show that the models can be adapted for prediction of the Cu2O-based-cell behavior prior to fabricating.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved performance of transparent-conducting AZO/Cu/AZO multilayer thin films by inserting a metal Ti layer for flexible electronics

Shihui Yu, Yifan Liu, Haoran Zheng, Lingxia Li, and Yongtao Sun
Opt. Lett. 42(15) 3020-3023 (2017)

Near infrared enhancement in CIGS-based solar cells utilizing a ZnO:H window layer

Chi-Li Yeh, Hung-Ru Hsu, Sheng-Hui Chen, and Yung-sheng Liu
Opt. Express 20(S6) A806-A811 (2012)

Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer

Jun Young Kim, Eunae Cho, Jaehoon Kim, Hyeonwoo Shin, Jeongkyun Roh, Mariyappan Thambidurai, Chan-mo Kang, Hyung-Jun Song, SeongMin Kim, Hyeok Kim, and Changhee Lee
Opt. Express 23(19) A1334-A1341 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
    [Crossref]
  2. S. Sinha, D. K. Nandi, S. H. Kim, and J. Heo, “Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review,” Sol. Energy Mater. Sol. Cells 176, 49–68 (2017).
    [Crossref]
  3. Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Appl. Phys. Lett. 112, 42106 (2018).
    [Crossref]
  4. S. H. Wee, P.-S. Huang, J.-K. Lee, and A. Goyal, “Heteroepitaxial Cu2O thin film solar cell on metallic substrates,” Sci. Rep. 5, 16272 (2015).
    [Crossref]
  5. N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
    [Crossref]
  6. T. Minami, Y. Nishi, and T. Miyata, “Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells,” Thin Solid Films 549, 65–69 (2013).
    [Crossref]
  7. T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Appl. Phys. Express 4, 062301 (2011).
    [Crossref]
  8. M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
    [Crossref]
  9. T. Minami, Y. Nishi, and T. Miyata, “Cu2O-based solar cells using oxide semiconductors,” J. Semicond. 37, 014002 (2016).
    [Crossref]
  10. T. Wong, S. Zhuk, S. Masudy-Panah, and G. Dalapati, “Current status and future prospects of copper oxide heterojunction solar cells,” Materials 9, 271 (2016).
    [Crossref]
  11. Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
    [Crossref]
  12. R. E. Brandt, N. M. Mangan, J. V. Li, Y. S. Lee, and T. Buonassisi, “Determining interface properties limiting open-circuit voltage in heterojunction solar cells,” J. Appl. Phys. 121, 185301 (2017).
    [Crossref]
  13. Y. Takiguchi and S. Miyajima, “Device simulation of cuprous oxide heterojunction solar cells,” Jpn. J. Appl. Phys. 54, 112303 (2015).
    [Crossref]
  14. L. Zhu, G. Shao, and J. K. Luo, “Numerical study of metal oxide hetero-junction solar cells with defects and interface states,” Semicond. Sci. Technol. 28, 055004 (2013).
    [Crossref]
  15. M. Adaika, A. Meftah, N. Sengouga, and M. Henini, “Numerical simulation of bias and photo stress on indium-gallium-zinc-oxide thin film transistors,” Vacuum 120, 59–67 (2015).
    [Crossref]
  16. G. S. Sahoo and G. P. Mishra, “Effective use of spectrum by an ARC less dual junction solar cell to achieve higher efficiency: a simulation study,” Superlattices Microstruct. 109, 794–804 (2017).
    [Crossref]
  17. C. Majumder, A. Rai, and C. Bose, “Performance optimization of bulk heterojunction organic solar cell,” Optik (Stuttgart) 157, 924–929 (2018).
    [Crossref]
  18. F. Djaafar, B. Hadri, and G. Bachir, “Optimal parameters for performant heterojunction InGaP/GaAs solar cell,” Int. J. Hydrogen Energy 42, 8644–8649 (2017).
    [Crossref]
  19. M. Toghyani Rizi, M. H. S. Abadi, and M. Ghaneii, “Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer,” Optik (Stuttgart) 155, 121–132 (2018).
    [Crossref]
  20. T. Minami, T. Miyata, and Y. Nishi, “Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure,” Sol. Energy 105, 206–217 (2014).
    [Crossref]
  21. O. Nonoichi, “A study of high-efficiency heterojunction solar cells using a Cu2O sheets as p-type oxide semiconductor layer,” Jpn. J. Appl. Phys. 43, L917–L919 (2004).
    [Crossref]
  22. H. Arbouz, A. Aissat, and J. P. Vilcot, “Simulation and optimization of CdS-n/Cu2ZnSnS4 structure for solar cell applications,” Int. J. Hydrogen Energy 42, 8827–8832 (2017).
    [Crossref]
  23. A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
    [Crossref]
  24. C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
    [Crossref]
  25. H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
    [Crossref]
  26. R. M. Gharehbagh, S. Özen, H. H. Yudar, S. Pat, and Ş. Korkmaz, “Investigation of some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique,” J. Mater. Sci. Mater. Electron. 28, 14131–14137 (2017).
    [Crossref]
  27. Y. Nishi, T. Miyata, and T. Minami, “The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells,” Thin Solid Films 528, 72–76 (2013).
    [Crossref]
  28. T. Minami, T. Miyata, and Y. Nishi, “Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 147, 85–93 (2016).
    [Crossref]
  29. Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
    [Crossref]
  30. J. W. Leem, J. S. Yu, J. N. Kim, and S. K. Noh, “Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells,” J. Korean Phys. Soc. 64, 1561–1565 (2014).
    [Crossref]
  31. A. Bahrami, S. Mohammadnejad, and S. Soleimaninezhad, “Optimized single and double layer antireflection coatings for GaAs solar cells,” Int. J. Renew. Energy Res. 3, 1–5 (2013).
  32. A. Rahmanian and A. Rahmani, “Effects and properties of double-layer anti-reflective coating In2O3/conic Al2O3 and three-layer anti-reflective coatings of TiO2/In2O3/conic Al2O3 on silicon substrate,” Optik 155, 163–170 (2018).
    [Crossref]
  33. L. P. Wang, P. De Han, Z. X. Zhang, C. L. Zhang, and B. S. Xu, “Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study,” Comput. Mater. Sci. 77, 281–285 (2013).
    [Crossref]
  34. M. Fortes, A. Belfar, and A. J. Garcia-Loureiro, “Efficiency increase of a-Si:H solar cells with optimized front and back contact textures,” Optik 158, 1131–1138 (2018).
    [Crossref]
  35. K. Ali, S. A. Khan, and M. Z. MatJafri, “TCAD design of silicon solar cells in comparison of antireflection coatings and back surface field,” Optik 127, 7492–7497 (2016).
    [Crossref]
  36. A. Ghadimi and H. Arzbin, “Efficiency improvement of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized two BSF layer in top and bottom cells,” Optik 148, 358–367 (2017).
    [Crossref]
  37. J. Verma, P. Dey, A. Prajapati, and T. D. Das, “Multi BSF layer InGaP/GaAs high efficiency solar cell,” in 11th International Conference on Intelligent Systems and Control (ISCO) (2017), pp. 278–281.
  38. Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
    [Crossref]
  39. G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
    [Crossref]
  40. H. Song, J. Nomoto, H. Makino, and T. Yamamoto, “Highly moisture resistant Ga-doped ZnO films with textured surface for thin-film solar cells with indium codoping fabricated by ion plating with direct-current arc discharge,” Jpn. J. Appl. Phys. 53, 05FJ04 (2014).
    [Crossref]
  41. H. Song, H. Makino, J. Nomoto, and N. Yamamoto, “Improved moisture stability of thin Ga-doped ZnO films by indium codoping,” Appl. Surf. Sci. 457, 241–246 (2018).
    [Crossref]
  42. K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
    [Crossref]
  43. H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
    [Crossref]
  44. J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
    [Crossref]
  45. T. Miyata, Y. Ohtani, T. Kuboi, and T. Minami, “Stability of nano-thick transparent conducting oxide films for use in a moist environment,” Thin Solid Films 516, 1354–1358 (2008).
  46. T. Minami, T. Kuboi, T. Miyata, and Y. Ohtani, “Stability in a high humidity environment of TCO thin films deposited at low temperatures,” Phys. Status Solidi A 205, 255–260 (2008).
    [Crossref]

2018 (8)

Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Appl. Phys. Lett. 112, 42106 (2018).
[Crossref]

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

C. Majumder, A. Rai, and C. Bose, “Performance optimization of bulk heterojunction organic solar cell,” Optik (Stuttgart) 157, 924–929 (2018).
[Crossref]

M. Toghyani Rizi, M. H. S. Abadi, and M. Ghaneii, “Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer,” Optik (Stuttgart) 155, 121–132 (2018).
[Crossref]

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

A. Rahmanian and A. Rahmani, “Effects and properties of double-layer anti-reflective coating In2O3/conic Al2O3 and three-layer anti-reflective coatings of TiO2/In2O3/conic Al2O3 on silicon substrate,” Optik 155, 163–170 (2018).
[Crossref]

M. Fortes, A. Belfar, and A. J. Garcia-Loureiro, “Efficiency increase of a-Si:H solar cells with optimized front and back contact textures,” Optik 158, 1131–1138 (2018).
[Crossref]

H. Song, H. Makino, J. Nomoto, and N. Yamamoto, “Improved moisture stability of thin Ga-doped ZnO films by indium codoping,” Appl. Surf. Sci. 457, 241–246 (2018).
[Crossref]

2017 (12)

K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
[Crossref]

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
[Crossref]

A. Ghadimi and H. Arzbin, “Efficiency improvement of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized two BSF layer in top and bottom cells,” Optik 148, 358–367 (2017).
[Crossref]

Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
[Crossref]

H. Arbouz, A. Aissat, and J. P. Vilcot, “Simulation and optimization of CdS-n/Cu2ZnSnS4 structure for solar cell applications,” Int. J. Hydrogen Energy 42, 8827–8832 (2017).
[Crossref]

R. M. Gharehbagh, S. Özen, H. H. Yudar, S. Pat, and Ş. Korkmaz, “Investigation of some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique,” J. Mater. Sci. Mater. Electron. 28, 14131–14137 (2017).
[Crossref]

F. Djaafar, B. Hadri, and G. Bachir, “Optimal parameters for performant heterojunction InGaP/GaAs solar cell,” Int. J. Hydrogen Energy 42, 8644–8649 (2017).
[Crossref]

G. S. Sahoo and G. P. Mishra, “Effective use of spectrum by an ARC less dual junction solar cell to achieve higher efficiency: a simulation study,” Superlattices Microstruct. 109, 794–804 (2017).
[Crossref]

R. E. Brandt, N. M. Mangan, J. V. Li, Y. S. Lee, and T. Buonassisi, “Determining interface properties limiting open-circuit voltage in heterojunction solar cells,” J. Appl. Phys. 121, 185301 (2017).
[Crossref]

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

S. Sinha, D. K. Nandi, S. H. Kim, and J. Heo, “Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review,” Sol. Energy Mater. Sol. Cells 176, 49–68 (2017).
[Crossref]

N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
[Crossref]

2016 (6)

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

T. Minami, Y. Nishi, and T. Miyata, “Cu2O-based solar cells using oxide semiconductors,” J. Semicond. 37, 014002 (2016).
[Crossref]

T. Wong, S. Zhuk, S. Masudy-Panah, and G. Dalapati, “Current status and future prospects of copper oxide heterojunction solar cells,” Materials 9, 271 (2016).
[Crossref]

K. Ali, S. A. Khan, and M. Z. MatJafri, “TCAD design of silicon solar cells in comparison of antireflection coatings and back surface field,” Optik 127, 7492–7497 (2016).
[Crossref]

T. Minami, T. Miyata, and Y. Nishi, “Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 147, 85–93 (2016).
[Crossref]

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

2015 (5)

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

S. H. Wee, P.-S. Huang, J.-K. Lee, and A. Goyal, “Heteroepitaxial Cu2O thin film solar cell on metallic substrates,” Sci. Rep. 5, 16272 (2015).
[Crossref]

Y. Takiguchi and S. Miyajima, “Device simulation of cuprous oxide heterojunction solar cells,” Jpn. J. Appl. Phys. 54, 112303 (2015).
[Crossref]

M. Adaika, A. Meftah, N. Sengouga, and M. Henini, “Numerical simulation of bias and photo stress on indium-gallium-zinc-oxide thin film transistors,” Vacuum 120, 59–67 (2015).
[Crossref]

2014 (4)

T. Minami, T. Miyata, and Y. Nishi, “Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure,” Sol. Energy 105, 206–217 (2014).
[Crossref]

J. W. Leem, J. S. Yu, J. N. Kim, and S. K. Noh, “Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells,” J. Korean Phys. Soc. 64, 1561–1565 (2014).
[Crossref]

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

H. Song, J. Nomoto, H. Makino, and T. Yamamoto, “Highly moisture resistant Ga-doped ZnO films with textured surface for thin-film solar cells with indium codoping fabricated by ion plating with direct-current arc discharge,” Jpn. J. Appl. Phys. 53, 05FJ04 (2014).
[Crossref]

2013 (5)

A. Bahrami, S. Mohammadnejad, and S. Soleimaninezhad, “Optimized single and double layer antireflection coatings for GaAs solar cells,” Int. J. Renew. Energy Res. 3, 1–5 (2013).

L. P. Wang, P. De Han, Z. X. Zhang, C. L. Zhang, and B. S. Xu, “Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study,” Comput. Mater. Sci. 77, 281–285 (2013).
[Crossref]

Y. Nishi, T. Miyata, and T. Minami, “The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells,” Thin Solid Films 528, 72–76 (2013).
[Crossref]

L. Zhu, G. Shao, and J. K. Luo, “Numerical study of metal oxide hetero-junction solar cells with defects and interface states,” Semicond. Sci. Technol. 28, 055004 (2013).
[Crossref]

T. Minami, Y. Nishi, and T. Miyata, “Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells,” Thin Solid Films 549, 65–69 (2013).
[Crossref]

2011 (2)

T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Appl. Phys. Express 4, 062301 (2011).
[Crossref]

C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
[Crossref]

2008 (2)

T. Miyata, Y. Ohtani, T. Kuboi, and T. Minami, “Stability of nano-thick transparent conducting oxide films for use in a moist environment,” Thin Solid Films 516, 1354–1358 (2008).

T. Minami, T. Kuboi, T. Miyata, and Y. Ohtani, “Stability in a high humidity environment of TCO thin films deposited at low temperatures,” Phys. Status Solidi A 205, 255–260 (2008).
[Crossref]

2004 (1)

O. Nonoichi, “A study of high-efficiency heterojunction solar cells using a Cu2O sheets as p-type oxide semiconductor layer,” Jpn. J. Appl. Phys. 43, L917–L919 (2004).
[Crossref]

Abadi, M. H. S.

M. Toghyani Rizi, M. H. S. Abadi, and M. Ghaneii, “Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer,” Optik (Stuttgart) 155, 121–132 (2018).
[Crossref]

Abdelfatah, M.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Adaika, M.

M. Adaika, A. Meftah, N. Sengouga, and M. Henini, “Numerical simulation of bias and photo stress on indium-gallium-zinc-oxide thin film transistors,” Vacuum 120, 59–67 (2015).
[Crossref]

Agten, D.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Aissat, A.

H. Arbouz, A. Aissat, and J. P. Vilcot, “Simulation and optimization of CdS-n/Cu2ZnSnS4 structure for solar cell applications,” Int. J. Hydrogen Energy 42, 8827–8832 (2017).
[Crossref]

Ali, K.

K. Ali, S. A. Khan, and M. Z. MatJafri, “TCAD design of silicon solar cells in comparison of antireflection coatings and back surface field,” Optik 127, 7492–7497 (2016).
[Crossref]

Almaggoussi, A.

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

Amorós, P.

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

Arbouz, H.

H. Arbouz, A. Aissat, and J. P. Vilcot, “Simulation and optimization of CdS-n/Cu2ZnSnS4 structure for solar cell applications,” Int. J. Hydrogen Energy 42, 8827–8832 (2017).
[Crossref]

Arzbin, H.

A. Ghadimi and H. Arzbin, “Efficiency improvement of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized two BSF layer in top and bottom cells,” Optik 148, 358–367 (2017).
[Crossref]

Bachir, G.

F. Djaafar, B. Hadri, and G. Bachir, “Optimal parameters for performant heterojunction InGaP/GaAs solar cell,” Int. J. Hydrogen Energy 42, 8644–8649 (2017).
[Crossref]

Bahrami, A.

A. Bahrami, S. Mohammadnejad, and S. Soleimaninezhad, “Optimized single and double layer antireflection coatings for GaAs solar cells,” Int. J. Renew. Energy Res. 3, 1–5 (2013).

Bakin, A.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Bansal, N.

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

Bauch, M.

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

Belfar, A.

M. Fortes, A. Belfar, and A. J. Garcia-Loureiro, “Efficiency increase of a-Si:H solar cells with optimized front and back contact textures,” Optik 158, 1131–1138 (2018).
[Crossref]

Bertagnolli, E.

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

Bethge, O.

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

Biccari, F.

C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
[Crossref]

Blancá, Y.

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
[Crossref]

Bose, C.

C. Majumder, A. Rai, and C. Bose, “Performance optimization of bulk heterojunction organic solar cell,” Optik (Stuttgart) 157, 924–929 (2018).
[Crossref]

Brammertz, G.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Brandt, R. E.

R. E. Brandt, N. M. Mangan, J. V. Li, Y. S. Lee, and T. Buonassisi, “Determining interface properties limiting open-circuit voltage in heterojunction solar cells,” J. Appl. Phys. 121, 185301 (2017).
[Crossref]

Buffière, M.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Buonassisi, T.

R. E. Brandt, N. M. Mangan, J. V. Li, Y. S. Lee, and T. Buonassisi, “Determining interface properties limiting open-circuit voltage in heterojunction solar cells,” J. Appl. Phys. 121, 185301 (2017).
[Crossref]

Cappelletti, M. A.

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
[Crossref]

Casas, G. A.

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
[Crossref]

Cédola, A. P.

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
[Crossref]

Chen, Y.

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

Chen-Wiegart, Y. C.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Chin, K. K.

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

Chou, K. W.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

D’Incau, M.

C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
[Crossref]

Dalapati, G.

T. Wong, S. Zhuk, S. Masudy-Panah, and G. Dalapati, “Current status and future prospects of copper oxide heterojunction solar cells,” Materials 9, 271 (2016).
[Crossref]

Das, T. D.

J. Verma, P. Dey, A. Prajapati, and T. D. Das, “Multi BSF layer InGaP/GaAs high efficiency solar cell,” in 11th International Conference on Intelligent Systems and Control (ISCO) (2017), pp. 278–281.

Dat, H. T.

N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
[Crossref]

De Han, P.

L. P. Wang, P. De Han, Z. X. Zhang, C. L. Zhang, and B. S. Xu, “Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study,” Comput. Mater. Sci. 77, 281–285 (2013).
[Crossref]

Delahoy, A. E.

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

Dey, P.

J. Verma, P. Dey, A. Prajapati, and T. D. Das, “Multi BSF layer InGaP/GaAs high efficiency solar cell,” in 11th International Conference on Intelligent Systems and Control (ISCO) (2017), pp. 278–281.

Dimopoulos, T.

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

Djaafar, F.

F. Djaafar, B. Hadri, and G. Bachir, “Optimal parameters for performant heterojunction InGaP/GaAs solar cell,” Int. J. Hydrogen Energy 42, 8644–8649 (2017).
[Crossref]

El Daif, O.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

El Hamidi, A.

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

El Haskouri, J.

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

El Hichou, A.

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

ElAnzeery, H.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

El-Shaer, A.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Fan, Z.-Q.

Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
[Crossref]

Fortes, M.

M. Fortes, A. Belfar, and A. J. Garcia-Loureiro, “Efficiency increase of a-Si:H solar cells with optimized front and back contact textures,” Optik 158, 1131–1138 (2018).
[Crossref]

Garcia-Loureiro, A. J.

M. Fortes, A. Belfar, and A. J. Garcia-Loureiro, “Efficiency increase of a-Si:H solar cells with optimized front and back contact textures,” Optik 158, 1131–1138 (2018).
[Crossref]

Ghadimi, A.

A. Ghadimi and H. Arzbin, “Efficiency improvement of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized two BSF layer in top and bottom cells,” Optik 148, 358–367 (2017).
[Crossref]

Ghaneii, M.

M. Toghyani Rizi, M. H. S. Abadi, and M. Ghaneii, “Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer,” Optik (Stuttgart) 155, 121–132 (2018).
[Crossref]

Gharehbagh, R. M.

R. M. Gharehbagh, S. Özen, H. H. Yudar, S. Pat, and Ş. Korkmaz, “Investigation of some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique,” J. Mater. Sci. Mater. Electron. 28, 14131–14137 (2017).
[Crossref]

Goyal, A.

S. H. Wee, P.-S. Huang, J.-K. Lee, and A. Goyal, “Heteroepitaxial Cu2O thin film solar cell on metallic substrates,” Sci. Rep. 5, 16272 (2015).
[Crossref]

Greiner, D.

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

Guindi, R.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Hadri, B.

F. Djaafar, B. Hadri, and G. Bachir, “Optimal parameters for performant heterojunction InGaP/GaAs solar cell,” Int. J. Hydrogen Energy 42, 8644–8649 (2017).
[Crossref]

Hamid, R.

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

Henini, M.

M. Adaika, A. Meftah, N. Sengouga, and M. Henini, “Numerical simulation of bias and photo stress on indium-gallium-zinc-oxide thin film transistors,” Vacuum 120, 59–67 (2015).
[Crossref]

Heo, J.

S. Sinha, D. K. Nandi, S. H. Kim, and J. Heo, “Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review,” Sol. Energy Mater. Sol. Cells 176, 49–68 (2017).
[Crossref]

Hotovy, J.

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

Huang, P.-S.

S. H. Wee, P.-S. Huang, J.-K. Lee, and A. Goyal, “Heteroepitaxial Cu2O thin film solar cell on metallic substrates,” Sci. Rep. 5, 16272 (2015).
[Crossref]

Hung, L. V. T.

N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
[Crossref]

Hüpkes, J.

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

Jannane, T.

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

Jiang, H.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Jiang, Z.

Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
[Crossref]

Kaur, J.

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

Ke, N. H.

N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
[Crossref]

Khan, S. A.

K. Ali, S. A. Khan, and M. Z. MatJafri, “TCAD design of silicon solar cells in comparison of antireflection coatings and back surface field,” Optik 127, 7492–7497 (2016).
[Crossref]

Khanal, M. P.

K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
[Crossref]

Kim, J. N.

J. W. Leem, J. S. Yu, J. N. Kim, and S. K. Noh, “Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells,” J. Korean Phys. Soc. 64, 1561–1565 (2014).
[Crossref]

Kim, S. H.

S. Sinha, D. K. Nandi, S. H. Kim, and J. Heo, “Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review,” Sol. Energy Mater. Sol. Cells 176, 49–68 (2017).
[Crossref]

Klenk, R.

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

Kniknie, B.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Korkmaz, S.

R. M. Gharehbagh, S. Özen, H. H. Yudar, S. Pat, and Ş. Korkmaz, “Investigation of some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique,” J. Mater. Sci. Mater. Electron. 28, 14131–14137 (2017).
[Crossref]

Kuboi, T.

T. Miyata, Y. Ohtani, T. Kuboi, and T. Minami, “Stability of nano-thick transparent conducting oxide films for use in a moist environment,” Thin Solid Films 516, 1354–1358 (2008).

T. Minami, T. Kuboi, T. Miyata, and Y. Ohtani, “Stability in a high humidity environment of TCO thin films deposited at low temperatures,” Phys. Status Solidi A 205, 255–260 (2008).
[Crossref]

Ledig, J.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Lee, J.-K.

S. H. Wee, P.-S. Huang, J.-K. Lee, and A. Goyal, “Heteroepitaxial Cu2O thin film solar cell on metallic substrates,” Sci. Rep. 5, 16272 (2015).
[Crossref]

Lee, Y. S.

R. E. Brandt, N. M. Mangan, J. V. Li, Y. S. Lee, and T. Buonassisi, “Determining interface properties limiting open-circuit voltage in heterojunction solar cells,” J. Appl. Phys. 121, 185301 (2017).
[Crossref]

Leem, J. W.

J. W. Leem, J. S. Yu, J. N. Kim, and S. K. Noh, “Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells,” J. Korean Phys. Soc. 64, 1561–1565 (2014).
[Crossref]

Lemmens, P.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Li, J. V.

R. E. Brandt, N. M. Mangan, J. V. Li, Y. S. Lee, and T. Buonassisi, “Determining interface properties limiting open-circuit voltage in heterojunction solar cells,” J. Appl. Phys. 121, 185301 (2017).
[Crossref]

Li, L.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Liang, J.

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Liba, A.

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

Liu, C.

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Liu, Y.

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Loan, P. T. K.

N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
[Crossref]

Luo, J. K.

L. Zhu, G. Shao, and J. K. Luo, “Numerical study of metal oxide hetero-junction solar cells with defects and interface states,” Semicond. Sci. Technol. 28, 055004 (2013).
[Crossref]

Ma, D.-H.

Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
[Crossref]

Ma, X.-B.

Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
[Crossref]

Majumder, C.

C. Majumder, A. Rai, and C. Bose, “Performance optimization of bulk heterojunction organic solar cell,” Optik (Stuttgart) 157, 924–929 (2018).
[Crossref]

Makino, H.

H. Song, H. Makino, J. Nomoto, and N. Yamamoto, “Improved moisture stability of thin Ga-doped ZnO films by indium codoping,” Appl. Surf. Sci. 457, 241–246 (2018).
[Crossref]

H. Song, J. Nomoto, H. Makino, and T. Yamamoto, “Highly moisture resistant Ga-doped ZnO films with textured surface for thin-film solar cells with indium codoping fabricated by ion plating with direct-current arc discharge,” Jpn. J. Appl. Phys. 53, 05FJ04 (2014).
[Crossref]

Malerba, C.

C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
[Crossref]

Mangan, N. M.

R. E. Brandt, N. M. Mangan, J. V. Li, Y. S. Lee, and T. Buonassisi, “Determining interface properties limiting open-circuit voltage in heterojunction solar cells,” J. Appl. Phys. 121, 185301 (2017).
[Crossref]

Marin-Borras, V.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Masudy-Panah, S.

T. Wong, S. Zhuk, S. Masudy-Panah, and G. Dalapati, “Current status and future prospects of copper oxide heterojunction solar cells,” Materials 9, 271 (2016).
[Crossref]

MatJafri, M. Z.

K. Ali, S. A. Khan, and M. Z. MatJafri, “TCAD design of silicon solar cells in comparison of antireflection coatings and back surface field,” Optik 127, 7492–7497 (2016).
[Crossref]

Meftah, A.

M. Adaika, A. Meftah, N. Sengouga, and M. Henini, “Numerical simulation of bias and photo stress on indium-gallium-zinc-oxide thin film transistors,” Vacuum 120, 59–67 (2015).
[Crossref]

Messaoud, K. B.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Meuris, M.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Meziane, K.

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

Minami, T.

T. Minami, T. Miyata, and Y. Nishi, “Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 147, 85–93 (2016).
[Crossref]

T. Minami, Y. Nishi, and T. Miyata, “Cu2O-based solar cells using oxide semiconductors,” J. Semicond. 37, 014002 (2016).
[Crossref]

T. Minami, T. Miyata, and Y. Nishi, “Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure,” Sol. Energy 105, 206–217 (2014).
[Crossref]

Y. Nishi, T. Miyata, and T. Minami, “The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells,” Thin Solid Films 528, 72–76 (2013).
[Crossref]

T. Minami, Y. Nishi, and T. Miyata, “Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells,” Thin Solid Films 549, 65–69 (2013).
[Crossref]

T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Appl. Phys. Express 4, 062301 (2011).
[Crossref]

T. Miyata, Y. Ohtani, T. Kuboi, and T. Minami, “Stability of nano-thick transparent conducting oxide films for use in a moist environment,” Thin Solid Films 516, 1354–1358 (2008).

T. Minami, T. Kuboi, T. Miyata, and Y. Ohtani, “Stability in a high humidity environment of TCO thin films deposited at low temperatures,” Phys. Status Solidi A 205, 255–260 (2008).
[Crossref]

Mirkhani, V.

K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
[Crossref]

Mishra, G. P.

G. S. Sahoo and G. P. Mishra, “Effective use of spectrum by an ARC less dual junction solar cell to achieve higher efficiency: a simulation study,” Superlattices Microstruct. 109, 794–804 (2017).
[Crossref]

Mittiga, A.

C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
[Crossref]

Miyajima, S.

Y. Takiguchi and S. Miyajima, “Device simulation of cuprous oxide heterojunction solar cells,” Jpn. J. Appl. Phys. 54, 112303 (2015).
[Crossref]

Miyata, T.

T. Minami, Y. Nishi, and T. Miyata, “Cu2O-based solar cells using oxide semiconductors,” J. Semicond. 37, 014002 (2016).
[Crossref]

T. Minami, T. Miyata, and Y. Nishi, “Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 147, 85–93 (2016).
[Crossref]

T. Minami, T. Miyata, and Y. Nishi, “Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure,” Sol. Energy 105, 206–217 (2014).
[Crossref]

Y. Nishi, T. Miyata, and T. Minami, “The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells,” Thin Solid Films 528, 72–76 (2013).
[Crossref]

T. Minami, Y. Nishi, and T. Miyata, “Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells,” Thin Solid Films 549, 65–69 (2013).
[Crossref]

T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Appl. Phys. Express 4, 062301 (2011).
[Crossref]

T. Minami, T. Kuboi, T. Miyata, and Y. Ohtani, “Stability in a high humidity environment of TCO thin films deposited at low temperatures,” Phys. Status Solidi A 205, 255–260 (2008).
[Crossref]

T. Miyata, Y. Ohtani, T. Kuboi, and T. Minami, “Stability of nano-thick transparent conducting oxide films for use in a moist environment,” Thin Solid Films 516, 1354–1358 (2008).

Mohammadnejad, S.

A. Bahrami, S. Mohammadnejad, and S. Soleimaninezhad, “Optimized single and double layer antireflection coatings for GaAs solar cells,” Int. J. Renew. Energy Res. 3, 1–5 (2013).

Mosaad, M. M.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Muto, A.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Nandi, D. K.

S. Sinha, D. K. Nandi, S. H. Kim, and J. Heo, “Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review,” Sol. Energy Mater. Sol. Cells 176, 49–68 (2017).
[Crossref]

Nishi, Y.

T. Minami, Y. Nishi, and T. Miyata, “Cu2O-based solar cells using oxide semiconductors,” J. Semicond. 37, 014002 (2016).
[Crossref]

T. Minami, T. Miyata, and Y. Nishi, “Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 147, 85–93 (2016).
[Crossref]

T. Minami, T. Miyata, and Y. Nishi, “Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure,” Sol. Energy 105, 206–217 (2014).
[Crossref]

Y. Nishi, T. Miyata, and T. Minami, “The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells,” Thin Solid Films 528, 72–76 (2013).
[Crossref]

T. Minami, Y. Nishi, and T. Miyata, “Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells,” Thin Solid Films 549, 65–69 (2013).
[Crossref]

T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Appl. Phys. Express 4, 062301 (2011).
[Crossref]

Noh, S. K.

J. W. Leem, J. S. Yu, J. N. Kim, and S. K. Noh, “Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells,” J. Korean Phys. Soc. 64, 1561–1565 (2014).
[Crossref]

Nomoto, J.

H. Song, H. Makino, J. Nomoto, and N. Yamamoto, “Improved moisture stability of thin Ga-doped ZnO films by indium codoping,” Appl. Surf. Sci. 457, 241–246 (2018).
[Crossref]

H. Song, J. Nomoto, H. Makino, and T. Yamamoto, “Highly moisture resistant Ga-doped ZnO films with textured surface for thin-film solar cells with indium codoping fabricated by ion plating with direct-current arc discharge,” Jpn. J. Appl. Phys. 53, 05FJ04 (2014).
[Crossref]

Nomoto, J. I.

T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Appl. Phys. Express 4, 062301 (2011).
[Crossref]

Nonoichi, O.

O. Nonoichi, “A study of high-efficiency heterojunction solar cells using a Cu2O sheets as p-type oxide semiconductor layer,” Jpn. J. Appl. Phys. 43, L917–L919 (2004).
[Crossref]

Nykypanchuk, D.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Ohtani, Y.

T. Miyata, Y. Ohtani, T. Kuboi, and T. Minami, “Stability of nano-thick transparent conducting oxide films for use in a moist environment,” Thin Solid Films 516, 1354–1358 (2008).

T. Minami, T. Kuboi, T. Miyata, and Y. Ohtani, “Stability in a high humidity environment of TCO thin films deposited at low temperatures,” Phys. Status Solidi A 205, 255–260 (2008).
[Crossref]

Oueslati, S.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Owen, J.

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

Ozden, B.

K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
[Crossref]

Özen, S.

R. M. Gharehbagh, S. Özen, H. H. Yudar, S. Pat, and Ş. Korkmaz, “Investigation of some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique,” J. Mater. Sci. Mater. Electron. 28, 14131–14137 (2017).
[Crossref]

Park, M.

K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
[Crossref]

Pat, S.

R. M. Gharehbagh, S. Özen, H. H. Yudar, S. Pat, and Ş. Korkmaz, “Investigation of some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique,” J. Mater. Sci. Mater. Electron. 28, 14131–14137 (2017).
[Crossref]

Peltzer, E. L.

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
[Crossref]

Peng, S.

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

Petrash, S.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Poortmans, J.

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Prajapati, A.

J. Verma, P. Dey, A. Prajapati, and T. D. Das, “Multi BSF layer InGaP/GaAs high efficiency solar cell,” in 11th International Conference on Intelligent Systems and Control (ISCO) (2017), pp. 278–281.

Qiang-Ma,

Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
[Crossref]

Rahmani, A.

A. Rahmanian and A. Rahmani, “Effects and properties of double-layer anti-reflective coating In2O3/conic Al2O3 and three-layer anti-reflective coatings of TiO2/In2O3/conic Al2O3 on silicon substrate,” Optik 155, 163–170 (2018).
[Crossref]

Rahmanian, A.

A. Rahmanian and A. Rahmani, “Effects and properties of double-layer anti-reflective coating In2O3/conic Al2O3 and three-layer anti-reflective coatings of TiO2/In2O3/conic Al2O3 on silicon substrate,” Optik 155, 163–170 (2018).
[Crossref]

Rai, A.

C. Majumder, A. Rai, and C. Bose, “Performance optimization of bulk heterojunction organic solar cell,” Optik (Stuttgart) 157, 924–929 (2018).
[Crossref]

Ricardo, C. L. A.

C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
[Crossref]

Ruske, F.

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

Sahoo, G. S.

G. S. Sahoo and G. P. Mishra, “Effective use of spectrum by an ARC less dual junction solar cell to achieve higher efficiency: a simulation study,” Superlattices Microstruct. 109, 794–804 (2017).
[Crossref]

Scardi, P.

C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
[Crossref]

Sengouga, N.

M. Adaika, A. Meftah, N. Sengouga, and M. Henini, “Numerical simulation of bias and photo stress on indium-gallium-zinc-oxide thin film transistors,” Vacuum 120, 59–67 (2015).
[Crossref]

Shao, G.

L. Zhu, G. Shao, and J. K. Luo, “Numerical study of metal oxide hetero-junction solar cells with defects and interface states,” Semicond. Sci. Technol. 28, 055004 (2013).
[Crossref]

Sharafeev, A.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Sinha, S.

S. Sinha, D. K. Nandi, S. H. Kim, and J. Heo, “Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review,” Sol. Energy Mater. Sol. Cells 176, 49–68 (2017).
[Crossref]

Soleimaninezhad, S.

A. Bahrami, S. Mohammadnejad, and S. Soleimaninezhad, “Optimized single and double layer antireflection coatings for GaAs solar cells,” Int. J. Renew. Energy Res. 3, 1–5 (2013).

Song, H.

H. Song, H. Makino, J. Nomoto, and N. Yamamoto, “Improved moisture stability of thin Ga-doped ZnO films by indium codoping,” Appl. Surf. Sci. 457, 241–246 (2018).
[Crossref]

H. Song, J. Nomoto, H. Makino, and T. Yamamoto, “Highly moisture resistant Ga-doped ZnO films with textured surface for thin-film solar cells with indium codoping fabricated by ion plating with direct-current arc discharge,” Jpn. J. Appl. Phys. 53, 05FJ04 (2014).
[Crossref]

Soucase, B. M.

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
[Crossref]

Sultan, M. S.

K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
[Crossref]

Takiguchi, Y.

Y. Takiguchi and S. Miyajima, “Device simulation of cuprous oxide heterojunction solar cells,” Jpn. J. Appl. Phys. 54, 112303 (2015).
[Crossref]

Tan, X.

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

Thieme, J.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Toghyani Rizi, M.

M. Toghyani Rizi, M. H. S. Abadi, and M. Ghaneii, “Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer,” Optik (Stuttgart) 155, 121–132 (2018).
[Crossref]

Tran, C. V.

N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
[Crossref]

Tuan, D. A.

N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
[Crossref]

Verma, J.

J. Verma, P. Dey, A. Prajapati, and T. D. Das, “Multi BSF layer InGaP/GaAs high efficiency solar cell,” in 11th International Conference on Intelligent Systems and Control (ISCO) (2017), pp. 278–281.

Vilcot, J. P.

H. Arbouz, A. Aissat, and J. P. Vilcot, “Simulation and optimization of CdS-n/Cu2ZnSnS4 structure for solar cell applications,” Int. J. Hydrogen Energy 42, 8827–8832 (2017).
[Crossref]

Waag, A.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Wagner, A.

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Wang, L. P.

L. P. Wang, P. De Han, Z. X. Zhang, C. L. Zhang, and B. S. Xu, “Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study,” Comput. Mater. Sci. 77, 281–285 (2013).
[Crossref]

Wang, X.

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Wang, Y.

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Wee, S. H.

S. H. Wee, P.-S. Huang, J.-K. Lee, and A. Goyal, “Heteroepitaxial Cu2O thin film solar cell on metallic substrates,” Sci. Rep. 5, 16272 (2015).
[Crossref]

Wibowo, R. A.

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

Williams, G.

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Wimmer, M.

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

Wong, T.

T. Wong, S. Zhuk, S. Masudy-Panah, and G. Dalapati, “Current status and future prospects of copper oxide heterojunction solar cells,” Materials 9, 271 (2016).
[Crossref]

Xia, Z.

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Xin, C.

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

Xu, B. S.

L. P. Wang, P. De Han, Z. X. Zhang, C. L. Zhang, and B. S. Xu, “Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study,” Comput. Mater. Sci. 77, 281–285 (2013).
[Crossref]

Yamamoto, N.

H. Song, H. Makino, J. Nomoto, and N. Yamamoto, “Improved moisture stability of thin Ga-doped ZnO films by indium codoping,” Appl. Surf. Sci. 457, 241–246 (2018).
[Crossref]

Yamamoto, T.

H. Song, J. Nomoto, H. Makino, and T. Yamamoto, “Highly moisture resistant Ga-doped ZnO films with textured surface for thin-film solar cells with indium codoping fabricated by ion plating with direct-current arc discharge,” Jpn. J. Appl. Phys. 53, 05FJ04 (2014).
[Crossref]

Yapabandara, K.

K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
[Crossref]

Yu, J. S.

J. W. Leem, J. S. Yu, J. N. Kim, and S. K. Noh, “Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells,” J. Korean Phys. Soc. 64, 1561–1565 (2014).
[Crossref]

Yudar, H. H.

R. M. Gharehbagh, S. Özen, H. H. Yudar, S. Pat, and Ş. Korkmaz, “Investigation of some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique,” J. Mater. Sci. Mater. Electron. 28, 14131–14137 (2017).
[Crossref]

Zang, Z.

Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Appl. Phys. Lett. 112, 42106 (2018).
[Crossref]

Zastrow, U.

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

Zhang, C.

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

Zhang, C. L.

L. P. Wang, P. De Han, Z. X. Zhang, C. L. Zhang, and B. S. Xu, “Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study,” Comput. Mater. Sci. 77, 281–285 (2013).
[Crossref]

Zhang, S.

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Zhang, W.-J.

Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
[Crossref]

Zhang, Z. X.

L. P. Wang, P. De Han, Z. X. Zhang, C. L. Zhang, and B. S. Xu, “Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study,” Comput. Mater. Sci. 77, 281–285 (2013).
[Crossref]

Zhou, H.

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Zhu, L.

L. Zhu, G. Shao, and J. K. Luo, “Numerical study of metal oxide hetero-junction solar cells with defects and interface states,” Semicond. Sci. Technol. 28, 055004 (2013).
[Crossref]

Zhuk, S.

T. Wong, S. Zhuk, S. Masudy-Panah, and G. Dalapati, “Current status and future prospects of copper oxide heterojunction solar cells,” Materials 9, 271 (2016).
[Crossref]

Appl. Phys. Express (1)

T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Appl. Phys. Express 4, 062301 (2011).
[Crossref]

Appl. Phys. Lett. (2)

Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Appl. Phys. Lett. 112, 42106 (2018).
[Crossref]

H. Jiang, K. W. Chou, S. Petrash, G. Williams, J. Thieme, D. Nykypanchuk, L. Li, A. Muto, and Y. C. Chen-Wiegart, “Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films,” Appl. Phys. Lett. 109, 091909 (2016).
[Crossref]

Appl. Surf. Sci. (1)

H. Song, H. Makino, J. Nomoto, and N. Yamamoto, “Improved moisture stability of thin Ga-doped ZnO films by indium codoping,” Appl. Surf. Sci. 457, 241–246 (2018).
[Crossref]

Comput. Mater. Sci. (1)

L. P. Wang, P. De Han, Z. X. Zhang, C. L. Zhang, and B. S. Xu, “Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study,” Comput. Mater. Sci. 77, 281–285 (2013).
[Crossref]

Int. J. Hydrogen Energy (2)

F. Djaafar, B. Hadri, and G. Bachir, “Optimal parameters for performant heterojunction InGaP/GaAs solar cell,” Int. J. Hydrogen Energy 42, 8644–8649 (2017).
[Crossref]

H. Arbouz, A. Aissat, and J. P. Vilcot, “Simulation and optimization of CdS-n/Cu2ZnSnS4 structure for solar cell applications,” Int. J. Hydrogen Energy 42, 8827–8832 (2017).
[Crossref]

Int. J. Renew. Energy Res. (1)

A. Bahrami, S. Mohammadnejad, and S. Soleimaninezhad, “Optimized single and double layer antireflection coatings for GaAs solar cells,” Int. J. Renew. Energy Res. 3, 1–5 (2013).

J. Appl. Phys. (1)

R. E. Brandt, N. M. Mangan, J. V. Li, Y. S. Lee, and T. Buonassisi, “Determining interface properties limiting open-circuit voltage in heterojunction solar cells,” J. Appl. Phys. 121, 185301 (2017).
[Crossref]

J. Electron. Mater. (1)

Y. Chen, X. Tan, S. Peng, C. Xin, A. E. Delahoy, K. K. Chin, and C. Zhang, “The influence of conduction band offset on CdTe solar cells,” J. Electron. Mater. 47, 1201–1207 (2018).
[Crossref]

J. Korean Phys. Soc. (1)

J. W. Leem, J. S. Yu, J. N. Kim, and S. K. Noh, “Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells,” J. Korean Phys. Soc. 64, 1561–1565 (2014).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

R. M. Gharehbagh, S. Özen, H. H. Yudar, S. Pat, and Ş. Korkmaz, “Investigation of some physical properties of Ge-doped ZnO thin films deposited by thermionic vacuum arc technique,” J. Mater. Sci. Mater. Electron. 28, 14131–14137 (2017).
[Crossref]

J. Photochem. Photobiol. A Chem. (1)

N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran, and L. V. T. Hung, “The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method,” J. Photochem. Photobiol. A Chem. 349, 100–107 (2017).
[Crossref]

J. Semicond. (1)

T. Minami, Y. Nishi, and T. Miyata, “Cu2O-based solar cells using oxide semiconductors,” J. Semicond. 37, 014002 (2016).
[Crossref]

J. Vac. Sci. Technol. B (1)

K. Yapabandara, V. Mirkhani, M. S. Sultan, B. Ozden, M. P. Khanal, and M. Park, “Study of device instability of bottom-gate ZnO transistors with sol-gel derived channel layers,” J. Vac. Sci. Technol. B 35, 03D104 (2017).
[Crossref]

Jpn. J. Appl. Phys. (3)

H. Song, J. Nomoto, H. Makino, and T. Yamamoto, “Highly moisture resistant Ga-doped ZnO films with textured surface for thin-film solar cells with indium codoping fabricated by ion plating with direct-current arc discharge,” Jpn. J. Appl. Phys. 53, 05FJ04 (2014).
[Crossref]

Y. Takiguchi and S. Miyajima, “Device simulation of cuprous oxide heterojunction solar cells,” Jpn. J. Appl. Phys. 54, 112303 (2015).
[Crossref]

O. Nonoichi, “A study of high-efficiency heterojunction solar cells using a Cu2O sheets as p-type oxide semiconductor layer,” Jpn. J. Appl. Phys. 43, L917–L919 (2004).
[Crossref]

Materials (1)

T. Wong, S. Zhuk, S. Masudy-Panah, and G. Dalapati, “Current status and future prospects of copper oxide heterojunction solar cells,” Materials 9, 271 (2016).
[Crossref]

Optik (6)

A. El Hamidi, K. Meziane, A. El Hichou, T. Jannane, A. Liba, J. El Haskouri, P. Amorós, and A. Almaggoussi, “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation,” Optik 158, 1139–1146 (2018).
[Crossref]

Qiang-Ma, W.-J. Zhang, D.-H. Ma, Z.-Q. Fan, X.-B. Ma, and Z. Jiang, “Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells,” Optik 177, 123–130 (2017).
[Crossref]

M. Fortes, A. Belfar, and A. J. Garcia-Loureiro, “Efficiency increase of a-Si:H solar cells with optimized front and back contact textures,” Optik 158, 1131–1138 (2018).
[Crossref]

K. Ali, S. A. Khan, and M. Z. MatJafri, “TCAD design of silicon solar cells in comparison of antireflection coatings and back surface field,” Optik 127, 7492–7497 (2016).
[Crossref]

A. Ghadimi and H. Arzbin, “Efficiency improvement of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized two BSF layer in top and bottom cells,” Optik 148, 358–367 (2017).
[Crossref]

A. Rahmanian and A. Rahmani, “Effects and properties of double-layer anti-reflective coating In2O3/conic Al2O3 and three-layer anti-reflective coatings of TiO2/In2O3/conic Al2O3 on silicon substrate,” Optik 155, 163–170 (2018).
[Crossref]

Optik (Stuttgart) (2)

C. Majumder, A. Rai, and C. Bose, “Performance optimization of bulk heterojunction organic solar cell,” Optik (Stuttgart) 157, 924–929 (2018).
[Crossref]

M. Toghyani Rizi, M. H. S. Abadi, and M. Ghaneii, “Two dimensional modeling of Cu2O heterojunction solar cells based-on β-Ga2O3 buffer,” Optik (Stuttgart) 155, 121–132 (2018).
[Crossref]

Phys. Status Solidi (1)

H. ElAnzeery, O. El Daif, M. Buffière, S. Oueslati, K. B. Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, M. Meuris, and J. Poortmans, “Refractive index extraction and thickness optimization of Cu2Zn/SnSe4 thin film solar cells,” Phys. Status Solidi 212, 1984–1990 (2015).
[Crossref]

Phys. Status Solidi A (1)

T. Minami, T. Kuboi, T. Miyata, and Y. Ohtani, “Stability in a high humidity environment of TCO thin films deposited at low temperatures,” Phys. Status Solidi A 205, 255–260 (2008).
[Crossref]

Sci. Rep. (1)

S. H. Wee, P.-S. Huang, J.-K. Lee, and A. Goyal, “Heteroepitaxial Cu2O thin film solar cell on metallic substrates,” Sci. Rep. 5, 16272 (2015).
[Crossref]

Semicond. Sci. Technol. (2)

L. Zhu, G. Shao, and J. K. Luo, “Numerical study of metal oxide hetero-junction solar cells with defects and interface states,” Semicond. Sci. Technol. 28, 055004 (2013).
[Crossref]

Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, and H. Zhou, “Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design,” Semicond. Sci. Technol. 30, 054004 (2015).
[Crossref]

Sol. Energy (1)

T. Minami, T. Miyata, and Y. Nishi, “Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure,” Sol. Energy 105, 206–217 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (5)

C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).
[Crossref]

T. Minami, T. Miyata, and Y. Nishi, “Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 147, 85–93 (2016).
[Crossref]

J. Kaur, O. Bethge, R. A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, and T. Dimopoulos, “All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode,” Sol. Energy Mater. Sol. Cells 161, 449–459 (2017).
[Crossref]

S. Sinha, D. K. Nandi, S. H. Kim, and J. Heo, “Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review,” Sol. Energy Mater. Sol. Cells 176, 49–68 (2017).
[Crossref]

M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, V. Marin-Borras, A. Sharafeev, P. Lemmens, M. M. Mosaad, A. Waag, and A. Bakin, “Fabrication and characterization of low cost Cu2O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials,” Sol. Energy Mater. Sol. Cells 145, 454–461 (2016).
[Crossref]

Superlattices Microstruct. (2)

G. S. Sahoo and G. P. Mishra, “Effective use of spectrum by an ARC less dual junction solar cell to achieve higher efficiency: a simulation study,” Superlattices Microstruct. 109, 794–804 (2017).
[Crossref]

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer, and Y. Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations,” Superlattices Microstruct. 107, 136–143 (2017).
[Crossref]

Thin Solid Films (4)

J. Hüpkes, J. Owen, M. Wimmer, F. Ruske, D. Greiner, R. Klenk, U. Zastrow, and J. Hotovy, “Damp heat stable doped zinc oxide films,” Thin Solid Films 555, 48–52 (2014).
[Crossref]

T. Miyata, Y. Ohtani, T. Kuboi, and T. Minami, “Stability of nano-thick transparent conducting oxide films for use in a moist environment,” Thin Solid Films 516, 1354–1358 (2008).

T. Minami, Y. Nishi, and T. Miyata, “Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells,” Thin Solid Films 549, 65–69 (2013).
[Crossref]

Y. Nishi, T. Miyata, and T. Minami, “The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells,” Thin Solid Films 528, 72–76 (2013).
[Crossref]

Vacuum (1)

M. Adaika, A. Meftah, N. Sengouga, and M. Henini, “Numerical simulation of bias and photo stress on indium-gallium-zinc-oxide thin film transistors,” Vacuum 120, 59–67 (2015).
[Crossref]

Other (1)

J. Verma, P. Dey, A. Prajapati, and T. D. Das, “Multi BSF layer InGaP/GaAs high efficiency solar cell,” in 11th International Conference on Intelligent Systems and Control (ISCO) (2017), pp. 278–281.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Solar cell structure with various buffers.
Fig. 2.
Fig. 2. Energy band alignment diagram of solar cell.
Fig. 3.
Fig. 3. (a) Experimental JV characteristics versus (b) simulated results.
Fig. 4.
Fig. 4. PV characterization of simulated cell.
Fig. 5.
Fig. 5. Simulated band diagram of solar cell. (a) Bufferless AZO/Cu2O; (b) buffered AZO/ZnO/Cu2O; (c) buffered AZO/βGa2O3/Cu2O; (d) buffered AZO/Zn1xGexO/Cu2O.
Fig. 6.
Fig. 6. (a) Experimental [9] versus (b) simulated EQE diagrams of the buffered cells.
Fig. 7.
Fig. 7. Solar cell structure with double layer antireflection coating.
Fig. 8.
Fig. 8. (a) Effect of antireflection coating on EQE; (b) effect of antireflection coating on reflectivity.
Fig. 9.
Fig. 9. Structure of solar cell with BSF.
Fig. 10.
Fig. 10. Effect of BSF doping on solar cell performance.
Fig. 11.
Fig. 11. Effect of absorber thickness on (a) solar cell performance; (b) EQE.
Fig. 12.
Fig. 12. Schematic diagram of moisture effect on AZO layer of solar cell.
Fig. 13.
Fig. 13. Normalized values of resistivity for AZO with various thicknesses. (a) Relationship between n-μ for AZO with various thicknesses; (b) normalized carrier concentration; (c) and Hall mobility (d) as functions of exposure time for AZO films with various thicknesses [45].
Fig. 14.
Fig. 14. Solar cell figures of merit as a function of moisture exposure time.

Tables (5)

Tables Icon

Table 1. Properties of the Materials Used for the Simulation

Tables Icon

Table 2. Details of the Experimental and the Simulated Results

Tables Icon

Table 3. Effects of Antireflection Coating on Cell Performance

Tables Icon

Table 4. Properties of the BSF and IL2 Layers Used for the Simulation

Tables Icon

Table 5. Extracted Values of Resistivity, Carrier Concentration and Mobility from Experimental Data

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

χIL=χBLχIL+EgIL=χCu2O+EgCu2O.
R=Sp·p,
p=NVexp(Ep/kT),
ΔEp=kTln(NA/NV),
VOC=AkT/qln(JSC/J0).
J=A*T2exp(qϕb/kT),
EQE(λ)=Jph(λ)/qF(λ)=hν×Jph(λ)/qI(λ),
n.t=λ/4,
n13=n02nwn23=n0nw2.
JSC(λ)=q(λ)ϕ(λ){1R(λ)}QE(λ)dλ,
η=VOCJSCFFPIN.
ZNO+H2OZn(OH)2.
H2O+O2H2O++O2.
ρi=1q(nμe+pμp),
ρi1qnμe2.33×103(Ωcm).