Abstract

A steady magnetic field perpendicular to a laser beam is widely used to improve the rate and quality of laser ablation. Recently, we reported a 69-fold enhancement of laser ablation of silicon using a magnetic field parallel to a laser beam. To understand the fundamental mechanisms of that phenomenon, multipulse magnetic-field-enhanced ablation of stainless steel, titanium alloy, and silicon was performed. The influence of magnetic field varies significantly depending on the material: from 2.8-fold ablation enhancement on stainless steel and silicon to no pronounced ablation modification on titanium alloy. Those results are discussed in terms of magnetized-plasma, magneto-absorption, skin-layer, and magnetic-field-influenced transport effects. Understanding of those mechanisms is crucial for advanced control of nanosecond laser–surface coupling to improve laser micromachining.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of the morphological evolution of the millisecond–nanosecond combined-pulse laser ablation of aluminum alloy

Bo-Shi Yuan, Di Wang, Yuan Dong, Wei Zhang, and Guang-Yong Jin
Appl. Opt. 57(20) 5743-5748 (2018)

Impact of assisting atmospheric pressure plasma on the formation of micro- and nanoparticles during picosecond-laser ablation of titanium

Stefan Grottker, Wolfgang Viöl, and Christoph Gerhard
Appl. Opt. 56(12) 3365-3371 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription