Abstract

The measurement range problem, where one cannot determine the data outside the range of the detector, limits the characterization of entanglement in high-dimensional quantum systems when employing, among other tools from information theory, the entropic uncertainty relations. Practically, the measurement range problem weakens the security of entanglement-based large-alphabet quantum key distribution (QKD) employing degrees of freedom including time-frequency or electric field quadrature. We present a modified entropic uncertainty relation that circumvents the measurement range problem under certain conditions and apply it to well-known QKD protocols. For time-frequency QKD, although our bound is an improvement, we find that high channel loss poses a problem for its feasibility. In homodyne-based continuous variable QKD, we find our bound provides a quantitative way to monitor for saturation attacks.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

Nathan Walk, Sara Hosseini, Jiao Geng, Oliver Thearle, Jing Yan Haw, Seiji Armstrong, Syed M. Assad, Jiri Janousek, Timothy C. Ralph, Thomas Symul, Howard M. Wiseman, and Ping Koy Lam
Optica 3(6) 634-642 (2016)

Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith
Opt. Express 21(13) 15959-15973 (2013)

Finite-key analysis of practical decoy-state measurement-device-independent quantum key distribution with unstable sources

Yang Wang, Wan-Su Bao, Chun Zhou, Mu-Sheng Jiang, and Hong-Wei Li
J. Opt. Soc. Am. B 36(3) B83-B91 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription