Abstract

This paper provides a detailed derivation of coupled-mode equations for thermo-optic nonlinear effects in dual-core fiber amplifiers. The equations predict both static and dynamic modal deformations depending on amplifier design. The prediction of static deformations is confirmed by nonlinear beam-propagation simulations. The dependencies of instabilities and their thresholds on launch conditions are analyzed by numerical simulations and analytical arguments. It is shown that the output stability properties are strongly dependent on the relative phase of the input in the two cores. The instability power threshold for dual-core amplifiers with strongly coupled cores are found to be lower than for a comparable single-core amplifier. However, as the core separation is increased, the dual-core amplifier threshold rapidly increases when light is amplified in the odd supermode.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theory of thermo-optic instabilities in dual-core fiber amplifiers

Jesper Lægsgaard, Federica Poli, Annamaria Cucinotta, and Stefano Selleri
Opt. Lett. 43(19) 4775-4778 (2018)

Theoretical analysis of mode instability in high-power fiber amplifiers

Kristian Rymann Hansen, Thomas Tanggaard Alkeskjold, Jes Broeng, and Jesper Lægsgaard
Opt. Express 21(2) 1944-1971 (2013)

Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers

Kristian Rymann Hansen and Jesper Lægsgaard
Opt. Express 22(9) 11267-11278 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (44)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription