Abstract

We investigate antireflection (AR) coating materials for two different operation lasing regimes requiring broad spectral bandwidth. We characterize high-power continuous-wave (CW) wavelength-tunable vertical-external-cavity surface-emitting semiconductor lasers and their passive mode-locking capabilities when using semiconductor saturable absorber mirrors. One laser gain design was investigated with different single dielectric layers as AR coatings. The dielectric coating materials used were SiO2, Al2O3, Ta2O5, and TiO2. The AR coating was designed to reduce pump reflection and increase the confinement factor of the microcavity. Average power of 4.6 W in CW and a total wavelength tuning range of 42 nm has been observed with the SiO2-coated structure. The shortest pulse of 708 fs was also observed for the SiO2-coated structure, with a corresponding CW wavelength tuning range of 36 nm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs

Martin Hoffmann, Oliver D. Sieber, Deran J. H. C. Maas, Valentin J. Wittwer, Matthias Golling, Thomas Südmeyer, and Ursula Keller
Opt. Express 18(10) 10143-10153 (2010)

Ultrashort pulse generation from 1.56 µm mode-locked VECSEL at room temperature

Aghiad Khadour, Sophie Bouchoule, Guy Aubin, Jean-Christophe Harmand, Jean Decobert, and Jean-Louis Oudar
Opt. Express 18(19) 19902-19913 (2010)

Non-equilibrium ultrashort pulse generation strategies in VECSELs

I. Kilen, S. W. Koch, J. Hader, and J. V. Moloney
Optica 4(4) 412-417 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100  mW average power,” Appl. Phys. Lett. 80, 3892–3894 (2002).
    [Crossref]
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  3. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
    [Crossref]
  4. D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
    [Crossref]
  5. B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
    [Crossref]
  6. M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
    [Crossref]
  7. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
    [Crossref]
  8. L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
    [Crossref]
  9. J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
    [Crossref]
  10. A. Hein, S. Menzel, and P. Unger, “High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range,” Appl. Phys. Lett. 101, 111109 (2012).
    [Crossref]
  11. M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
    [Crossref]
  12. D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
    [Crossref]
  13. V. J. Wittwer, C. A. Zaugg, Z. Sun, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, M. Golling, Y. Lee, J. H. Ahn, U. Keller, and A. C. Ferrari, “Graphene saturable absorbers for VECSELs,” Proc. SPIE 8966, 89660X (2014).
    [Crossref]
  14. Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80  nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109, 022101 (2016).
    [Crossref]
  15. A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
    [Crossref]
  16. C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
    [Crossref]
  17. O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
    [Crossref]
  18. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
    [Crossref]
  19. M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
    [Crossref]
  20. C. Borgentun, J. Bengtsson, and A. Larsson, “Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping,” Opt. Express 19, 16890–16897 (2011).
    [Crossref]
  21. M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148(2012).
    [Crossref]
  22. C. R. Head, K. G. Wilcox, A. P. Turnbull, O. J. Morris, E. A. Shaw, and A. C. Tropper, “Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset,” Opt. Express 22, 6919–6924 (2014).
    [Crossref]
  23. M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18, 10143–10153 (2010).
    [Crossref]
  24. https://doi.org/10.5258/SOTON/D0742 .

2017 (1)

A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
[Crossref]

2016 (2)

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80  nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109, 022101 (2016).
[Crossref]

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

2014 (3)

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

V. J. Wittwer, C. A. Zaugg, Z. Sun, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, M. Golling, Y. Lee, J. H. Ahn, U. Keller, and A. C. Ferrari, “Graphene saturable absorbers for VECSELs,” Proc. SPIE 8966, 89660X (2014).
[Crossref]

C. R. Head, K. G. Wilcox, A. P. Turnbull, O. J. Morris, E. A. Shaw, and A. C. Tropper, “Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset,” Opt. Express 22, 6919–6924 (2014).
[Crossref]

2013 (2)

2012 (5)

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

A. Hein, S. Menzel, and P. Unger, “High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range,” Appl. Phys. Lett. 101, 111109 (2012).
[Crossref]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148(2012).
[Crossref]

2011 (2)

C. Borgentun, J. Bengtsson, and A. Larsson, “Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping,” Opt. Express 19, 16890–16897 (2011).
[Crossref]

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

2010 (3)

2009 (2)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[Crossref]

2007 (1)

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

2002 (1)

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100  mW average power,” Appl. Phys. Lett. 80, 3892–3894 (2002).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Ahn, J. H.

Albrecht, A. R.

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80  nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109, 022101 (2016).
[Crossref]

Alfieri, C. G. E.

Apostolopoulos, V.

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Barnes, M. E.

Bedford, R.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Beere, H. E.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

Bengtsson, J.

C. Borgentun, J. Bengtsson, and A. Larsson, “Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping,” Opt. Express 19, 16890–16897 (2011).
[Crossref]

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[Crossref]

Borgentun, C.

C. Borgentun, J. Bengtsson, and A. Larsson, “Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping,” Opt. Express 19, 16890–16897 (2011).
[Crossref]

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Broda, A.

A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
[Crossref]

Butkus, M.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Cederberg, J. G.

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80  nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109, 022101 (2016).
[Crossref]

Demaria, F.

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[Crossref]

Elsmere, S. P.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Fallahi, M.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Fan, L.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Farrer, I.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Fedorova, K. A.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

Ferrari, A. C.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Gaafar, M.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

Garnache, A.

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
[Crossref]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100  mW average power,” Appl. Phys. Lett. 80, 3892–3894 (2002).
[Crossref]

Gini, E.

Golling, M.

Guina, M.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[Crossref]

Hader, J.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Hamilton, C. J.

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Harkonen, A.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[Crossref]

Head, C. R.

C. R. Head, K. G. Wilcox, A. P. Turnbull, O. J. Morris, E. A. Shaw, and A. C. Tropper, “Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset,” Opt. Express 22, 6919–6924 (2014).
[Crossref]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

Hein, A.

A. Hein, S. Menzel, and P. Unger, “High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range,” Appl. Phys. Lett. 101, 111109 (2012).
[Crossref]

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[Crossref]

Heinen, B.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Hoffmann, M.

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Hoogland, S.

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
[Crossref]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100  mW average power,” Appl. Phys. Lett. 80, 3892–3894 (2002).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kbashi, H. J.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

Keller, U.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3, 844–852 (2016).
[Crossref]

V. J. Wittwer, C. A. Zaugg, Z. Sun, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, M. Golling, Y. Lee, J. H. Ahn, U. Keller, and A. C. Ferrari, “Graphene saturable absorbers for VECSELs,” Proc. SPIE 8966, 89660X (2014).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148(2012).
[Crossref]

M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18, 10143–10153 (2010).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Koch, M.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Koch, S. W.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Koskinen, R.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[Crossref]

Krestnikov, I. L.

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148(2012).
[Crossref]

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Kulmala, T. S.

Kunert, B.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

Larsson, A.

C. Borgentun, J. Bengtsson, and A. Larsson, “Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping,” Opt. Express 19, 16890–16897 (2011).
[Crossref]

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[Crossref]

Lee, Y.

Link, S. M.

Livshits, D. A.

Livshits, D. D.

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Maas, D. J. H. C.

Malcolm, G. G.

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Mangold, M.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Menzel, S.

A. Hein, S. Menzel, and P. Unger, “High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range,” Appl. Phys. Lett. 101, 111109 (2012).
[Crossref]

Mihoubi, Z.

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Mikhrin, S. S.

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Milana, S.

Moloney, J. V.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Morris, O. J.

C. R. Head, K. G. Wilcox, A. P. Turnbull, O. J. Morris, E. A. Shaw, and A. C. Tropper, “Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset,” Opt. Express 22, 6919–6924 (2014).
[Crossref]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

Mosley, P. J.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

Murray, J. T.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Muszalski, J.

A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
[Crossref]

Nakdali, D. A.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

Okhotnikov, O. G.

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Paajaste, J.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[Crossref]

Pessa, M.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[Crossref]

Popa, D.

Quarterman, A. H.

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Rafailov, E. U.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Rahimi-Iman, A.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

Rautiainen, J.

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

Ritchie, D. A.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
[Crossref]

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Roberts, J. S.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100  mW average power,” Appl. Phys. Lett. 80, 3892–3894 (2002).
[Crossref]

Sagnes, I.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100  mW average power,” Appl. Phys. Lett. 80, 3892–3894 (2002).
[Crossref]

Saint-Girons, G.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100  mW average power,” Appl. Phys. Lett. 80, 3892–3894 (2002).
[Crossref]

Sankowska, I.

A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
[Crossref]

Scheller, M.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

Shakfa, M. K.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

Shaw, E. A.

Sheik-Bahae, M.

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80  nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109, 022101 (2016).
[Crossref]

Sieber, O. D.

Sparenberg, M.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Stolz, W.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Südmeyer, T.

Sun, Z.

Sundaram, R. S.

Suomalainen, S.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[Crossref]

Tilma, B. W.

Tropper, A.

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Tropper, A. C.

Turnbull, A. P.

C. R. Head, K. G. Wilcox, A. P. Turnbull, O. J. Morris, E. A. Shaw, and A. C. Tropper, “Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset,” Opt. Express 22, 6919–6924 (2014).
[Crossref]

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

Unger, P.

A. Hein, S. Menzel, and P. Unger, “High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range,” Appl. Phys. Lett. 101, 111109 (2012).
[Crossref]

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[Crossref]

Waldburger, D.

Wang, T. L.

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Wasiak, M.

A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
[Crossref]

Weber, A.

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Wichmann, M.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

Wieckowska, M.

A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
[Crossref]

Wilcox, K. G.

Wittwer, V. J.

Wójcik-Jedlinska, A.

A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
[Crossref]

Yang, Z.

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80  nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109, 022101 (2016).
[Crossref]

Zakharian, A. R.

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

Zaugg, C. A.

Zhang, F.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

Zulonas, M.

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

Appl. Phys. Lett. (3)

A. Hein, S. Menzel, and P. Unger, “High-power high-efficiency optically pumped semiconductor disk lasers in the green spectral region with a broad tuning range,” Appl. Phys. Lett. 101, 111109 (2012).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80  nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109, 022101 (2016).
[Crossref]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100  mW average power,” Appl. Phys. Lett. 80, 3892–3894 (2002).
[Crossref]

Electron. Lett. (2)

B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106  W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48, 516–517 (2012).
[Crossref]

M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682  fs pulses with 5.1  W of average output power,” Electron. Lett. 48, 588–589 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. G. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. D. Livshits, and E. U. Rafailov, “Quantum dot based semiconductor disk lasers for 1–1.3  μm,” IEEE J. Sel. Top. Quantum Electron. 17, 1763–1771 (2011).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (4)

A. Broda, A. Wójcik-Jedlińska, I. Sankowska, M. Wasiak, M. Wieckowska, and J. Muszalski, “A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 29, 2215–2218 (2017).
[Crossref]

C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, and P. Unger, “Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser,” IEEE Photon. Technol. Lett. 22, 978–980 (2010).
[Crossref]

D. A. Nakdali, M. K. Shakfa, M. Gaafar, M. Butkus, K. A. Fedorova, M. Zulonas, M. Wichmann, F. Zhang, B. Heinen, A. Rahimi-Iman, W. Stolz, E. U. Rafailov, and M. Koch, “High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8  W,” IEEE Photon. Technol. Lett. 26, 1561–1564 (2014).
[Crossref]

L. Fan, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, R. Bedford, J. T. Murray, W. Stolz, and S. W. Koch, “Extended tunability in a two-chip VECSEL,” IEEE Photon. Technol. Lett. 19, 544–546 (2007).
[Crossref]

J. Cryst. Growth (1)

J. Paajaste, S. Suomalainen, R. Koskinen, A. Harkonen, M. Guina, and M. Pessa, “High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2  μm,” J. Cryst. Growth 311, 1917–1919 (2009).
[Crossref]

Nat. Photonics (1)

A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3, 729–731 (2009).
[Crossref]

Opt. Express (7)

M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18, 10143–10153 (2010).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

C. Borgentun, J. Bengtsson, and A. Larsson, “Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping,” Opt. Express 19, 16890–16897 (2011).
[Crossref]

M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18, 21330–21341 (2010).
[Crossref]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35  kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21, 1599–1605 (2013).
[Crossref]

M. Mangold, V. J. Wittwer, O. D. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, and U. Keller, “VECSEL gain characterization,” Opt. Express 20, 4136–4148(2012).
[Crossref]

C. R. Head, K. G. Wilcox, A. P. Turnbull, O. J. Morris, E. A. Shaw, and A. C. Tropper, “Saturated gain spectrum of VECSELs determined by transient measurement of lasing onset,” Opt. Express 22, 6919–6924 (2014).
[Crossref]

Optica (1)

Proc. SPIE (2)

O. J. Morris, K. G. Wilcox, C. R. Head, A. P. Turnbull, P. J. Mosley, A. H. Quarterman, H. J. Kbashi, I. Farrer, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “A wavelength tunable 2-ps pulse VECSEL,” Proc. SPIE 8242, 824212 (2012).
[Crossref]

V. J. Wittwer, C. A. Zaugg, Z. Sun, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, M. Golling, Y. Lee, J. H. Ahn, U. Keller, and A. C. Ferrari, “Graphene saturable absorbers for VECSELs,” Proc. SPIE 8966, 89660X (2014).
[Crossref]

Other (1)

https://doi.org/10.5258/SOTON/D0742 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Respective calculated | E - field | 2 intensities at the QWs for each AR-coated structure show the impact the refractive index of the coating layer has on the overall spectral enhancement profile of the gain structures. (b) Obtained average power during tuning of the emission wavelength via the 2-mm-thick BRF, for each dielectric coating. The incident pump power was 21.8 W. (c) Corresponding lasing spectrum of each structure when mode-locked with the same SESAM and an incident pump power of 28.4 W. (d) The calculated GDD profile for each of the AR-coated gain structures.
Fig. 2.
Fig. 2. VECSEL cavity for the passive mode-locking experiment consisting of three main components: the SESAM, the processed VECSEL gain chip (with a dielectric AR coating), and a 1.45% OC. The VECSEL is pumped with a 28.4 W, 808 nm fiber-coupled diode laser.
Fig. 3.
Fig. 3. Autocorrelations obtained for each AR-coated structure. The solid line is a sech 2 fit for the SiO 2 -coated sample, with a pulse duration of 708 fs.

Tables (2)

Tables Icon

Table 1. Summary of the CW Wavelength Tuning Results for Each Dielectric Coating Material with a Refractive Index of n , Where Δ λ Is the Total Tuning Range, Δ λ FWHM Is the FWHM Tuning Range, and Max P avg Is the Maximum Average Power Observed

Tables Icon

Table 2. Observed Pulse Duration, τ pulse ; Average Power, P avg ; and Transform Limit Product during Mode Locking for Each Dielectric AR Coating

Metrics