Abstract

Within this work, the numerical solution of the photon transport equation for pulse amplification is presented. Several discretization schemes are introduced that enable the calculation of the coupling between the transport equation and population inversion. It is demonstrated that the presented discretization schemes are convergent with respect to the analytic Frantz–Nodvik solution. Specifically, the application of a prediction-correction approach based on Heun’s method leads to an improvement in accuracy compared to the pure explicit approach. Finally, novel discretization schemes are applied to simulate different regenerative amplifiers based on Ti:Sapphire and Ho:YAG. Moreover, bifurcation of the Ho:YAG system is analyzed, which results in the determination of stable operating regimes for pulsed amplification.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional fast marching for geometrical optics

Amedeo Capozzoli, Claudio Curcio, Angelo Liseno, and Salvatore Savarese
Opt. Express 22(22) 26680-26695 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription