Abstract

Thin-film compression (TFC) and the focusability of high-power laser pulses after self-phase modulation in thin films at transport intensities (1  TW/cm2) for petawatt laser systems is demonstrated. High-energy (296  mJ) laser pulses are compressed from 55  fs to 31  fs. Additionally, the focusability of high-power (4555  TW) flat-top laser pulses after spectral broadening in thin films is found to be largely maintained, showing only modest decreases in the energy contained in the central part of the focal spot. In light of these findings, TFC offers a method for moving toward single-cycle pulse durations at significantly higher energies than those found at present, and if beam instabilities can be mitigated, maybe even higher intensities.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond pulse self-shortening in Kerr media due to transient regime of multiple filamentation

Ya. V. Grudtsyn, A. V. Koribut, V. A. Trofimov, and L. D. Mikheev
J. Opt. Soc. Am. B 35(5) 1054-1058 (2018)

Spectral broadening and compression of sub-millijoule laser pulses in hollow-core fibers filled with sulfur hexafluoride

Andreas Hoffmann, Michael Zürch, Maximilian Gräfe, and Christian Spielmann
Opt. Express 22(10) 12038-12045 (2014)

Spatio-temporal characterization of few-cycle pulses obtained by filamentation

A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller
Opt. Express 15(9) 5394-5405 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T. Tajima and J. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
    [Crossref]
  2. M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
    [Crossref]
  3. T. Tajima, “Laser acceleration in novel media,” Eur. Phys. J. Spec. Top. 223, 1037–1044 (2014).
    [Crossref]
  4. G. Mourou and T. Tajima, eds., Zetta-Exawatt Science and Technology, vol. 223 of European Physical Journal Special Topics (Springer, 2014).
  5. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [Crossref]
  6. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24, 160–162 (1999).
    [Crossref]
  7. “Extreme Light Infrastructure (ELI),” 2018, https://eli-laser.eu/ .
  8. “Station of Extreme Light (SEL),” 2018, https://indico.sinap.ac.cn/ .
  9. G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
    [Crossref]
  10. R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical kerr effect,” Appl. Phys. Lett. 14, 140–143 (1969).
    [Crossref]
  11. D. Grischkowsky and A. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1–3 (1982).
    [Crossref]
  12. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
    [Crossref]
  13. B. Nikolaus and D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1–2 (1983).
    [Crossref]
  14. W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
    [Crossref]
  15. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [Crossref]
  16. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
    [Crossref]
  17. C. Rolland and P. B. Corkum, “Compression of high-power optical pulses,” J. Opt. Soc. Am. B 5, 641–647 (1988).
    [Crossref]
  18. F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19, 1097–1100 (1967).
    [Crossref]
  19. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [Crossref]
  20. G. Mourou, G. Cheriaux, and C. Raider, “Device for generating a short duration laser pulse,” U.S. patent20110299152A1 (July31, 2009).
  21. E. Mével, O. Tcherbakoff, F. Salin, and E. Constant, “Extracavity compression technique for high-energy femtosecond pulses,” J. Opt. Soc. Am. B 20, 105–108 (2003).
    [Crossref]
  22. S. Mironov, V. Lozhkarev, V. Ginzburg, and E. Khazanov, “High-efficiency second-harmonic generation of superintense ultrashort laser pulses,” Appl. Opt. 48, 2051–2057 (2009).
    [Crossref]
  23. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0  fs, 5.0  mJ pulses at 1  kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010).
    [Crossref]
  24. A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, “Subexawatt few-cycle lightwave generation via multipetawatt pulse compression,” Opt. Commun. 291, 299–303 (2013).
    [Crossref]
  25. S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
    [Crossref]
  26. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
    [Crossref]
  27. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” ZhETF Pisma Redaktsiiu 3, 471–476 (1966).
  28. A. A. Voronin and A. M. Zheltikov, “Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold,” Phys. Rev. A 94, 023824 (2016).
    [Crossref]
  29. A. A. Voronin and A. M. Zheltikov, “Power-scalable subcycle pulses from laser filaments,” Sci. Rep. 7, 36263 (2017).
    [Crossref]
  30. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity-300-TW laser at 0.1  Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).
    [Crossref]
  31. “pyNLO: Nonlinear optics modeling for Python,” 2015, https://pynlo.readthedocs.io/en/latest/index.html .
  32. M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
    [Crossref]
  33. W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: theory and numerical analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
    [Crossref]
  34. R. W. Boyd, “Processes resulting from the intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 7, pp. 329–390.
  35. W. Koechner, “Laser amplifier,” in Solid-State Laser Engineering, Springer Series in Optical Sciences (Springer, 2006), pp. 156–209.
  36. A. J. Taylor, T. S. Clement, and G. Rodriguez, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21, 1812–1814 (1996).
    [Crossref]
  37. A. M. Rubenchik, S. K. Turitsyn, and M. P. Fedoruk, “Modulation instability in high power laser amplifiers,” Opt. Express 18, 1380–1388 (2010).
    [Crossref]
  38. P. He, Y. Liu, K. Zhao, H. Teng, X. He, P. Huang, H. Huang, S. Zhong, Y. Jiang, S. Fang, X. Hou, and Z. Wei, “High-efficiency supercontinuum generation in solid thin plates at 0.1  TW level,” Opt. Lett. 42, 474–477 (2017).
    [Crossref]
  39. V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
    [Crossref]
  40. G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, “Single cycle thin film compressor opening the door to zeptosecond-exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).
    [Crossref]
  41. V. N. Ginzburg, A. A. Kochetkov, A. K. Potemkin, and E. A. Khazanov, “Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space,” Quantum Electron. 48, 325–331 (2018).
    [Crossref]
  42. S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, “Suppression of small-scale self-focusing of high-intensity femtosecond radiation,” Appl. Phys. B 113, 147–151 (2013).
    [Crossref]
  43. S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
    [Crossref]
  44. J. T. Hunt, J. A. Glaze, W. W. Simmons, and P. A. Renard, “Suppression of self-focusing through low-pass spatial filtering and relay imaging,” Appl. Opt. 17, 2053–2057 (1978).
    [Crossref]

2018 (1)

V. N. Ginzburg, A. A. Kochetkov, A. K. Potemkin, and E. A. Khazanov, “Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space,” Quantum Electron. 48, 325–331 (2018).
[Crossref]

2017 (3)

A. A. Voronin and A. M. Zheltikov, “Power-scalable subcycle pulses from laser filaments,” Sci. Rep. 7, 36263 (2017).
[Crossref]

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

P. He, Y. Liu, K. Zhao, H. Teng, X. He, P. Huang, H. Huang, S. Zhong, Y. Jiang, S. Fang, X. Hou, and Z. Wei, “High-efficiency supercontinuum generation in solid thin plates at 0.1  TW level,” Opt. Lett. 42, 474–477 (2017).
[Crossref]

2016 (3)

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

A. A. Voronin and A. M. Zheltikov, “Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold,” Phys. Rev. A 94, 023824 (2016).
[Crossref]

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

2014 (2)

G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, “Single cycle thin film compressor opening the door to zeptosecond-exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).
[Crossref]

T. Tajima, “Laser acceleration in novel media,” Eur. Phys. J. Spec. Top. 223, 1037–1044 (2014).
[Crossref]

2013 (2)

A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, “Subexawatt few-cycle lightwave generation via multipetawatt pulse compression,” Opt. Commun. 291, 299–303 (2013).
[Crossref]

S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, “Suppression of small-scale self-focusing of high-intensity femtosecond radiation,” Appl. Phys. B 113, 147–151 (2013).
[Crossref]

2012 (1)

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

2011 (1)

G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (1)

2003 (1)

1999 (1)

1997 (1)

1996 (2)

A. J. Taylor, T. S. Clement, and G. Rodriguez, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21, 1812–1814 (1996).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

1993 (1)

M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[Crossref]

1988 (1)

1985 (2)

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

1983 (1)

B. Nikolaus and D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1–2 (1983).
[Crossref]

1982 (2)

D. Grischkowsky and A. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1–3 (1982).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

1980 (1)

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: theory and numerical analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
[Crossref]

1979 (1)

T. Tajima and J. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
[Crossref]

1978 (2)

1969 (1)

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical kerr effect,” Appl. Phys. Lett. 14, 140–143 (1969).
[Crossref]

1967 (1)

F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19, 1097–1100 (1967).
[Crossref]

1966 (1)

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” ZhETF Pisma Redaktsiiu 3, 471–476 (1966).

1965 (1)

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

Ališauskas, S.

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Babin, A.

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Balant, A.

D. Grischkowsky and A. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1–3 (1982).
[Crossref]

Baltuška, A.

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Bespalov, V. I.

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” ZhETF Pisma Redaktsiiu 3, 471–476 (1966).

Bin, J.

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

Bohman, S.

Boyd, R. W.

R. W. Boyd, “Processes resulting from the intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 7, pp. 329–390.

Britten, J. A.

Brown, C.

Cheriaux, G.

Chvykov, V.

Clement, T. S.

Constant, E.

Corkum, P. B.

Dawson, J.

T. Tajima and J. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
[Crossref]

De Silvestri, S.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Ditmire, T.

A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, “Subexawatt few-cycle lightwave generation via multipetawatt pulse compression,” Opt. Commun. 291, 299–303 (2013).
[Crossref]

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

Faccio, D.

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Fadeev, S.

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Fang, S.

Fedoruk, M. P.

Ferencz, K.

Fisher, R. A.

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical kerr effect,” Appl. Phys. Lett. 14, 140–143 (1969).
[Crossref]

Fork, R. L.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Ginzburg, V.

Ginzburg, V. N.

V. N. Ginzburg, A. A. Kochetkov, A. K. Potemkin, and E. A. Khazanov, “Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space,” Quantum Electron. 48, 325–331 (2018).
[Crossref]

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Glaze, J. A.

Golick, B.

Grischkowsky, D.

B. Nikolaus and D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1–2 (1983).
[Crossref]

D. Grischkowsky and A. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1–3 (1982).
[Crossref]

Gustafson, T. K.

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical kerr effect,” Appl. Phys. Lett. 14, 140–143 (1969).
[Crossref]

He, P.

He, X.

Herman, S.

Hopfel, R. A.

M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[Crossref]

Hou, X.

Huang, H.

Huang, P.

Hunt, J. T.

Jiang, Y.

Kalinchenko, G.

Kanai, T.

Kartashov, D.

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Kartz, M.

Kelley, P. L.

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical kerr effect,” Appl. Phys. Lett. 14, 140–143 (1969).
[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

Khazanov, E.

G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, “Single cycle thin film compressor opening the door to zeptosecond-exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).
[Crossref]

S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, “Suppression of small-scale self-focusing of high-intensity femtosecond radiation,” Appl. Phys. B 113, 147–151 (2013).
[Crossref]

S. Mironov, V. Lozhkarev, V. Ginzburg, and E. Khazanov, “High-efficiency second-harmonic generation of superintense ultrashort laser pulses,” Appl. Opt. 48, 2051–2057 (2009).
[Crossref]

Khazanov, E. A.

V. N. Ginzburg, A. A. Kochetkov, A. K. Potemkin, and E. A. Khazanov, “Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space,” Quantum Electron. 48, 325–331 (2018).
[Crossref]

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Knox, W. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

Kochetkov, A. A.

V. N. Ginzburg, A. A. Kochetkov, A. K. Potemkin, and E. A. Khazanov, “Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space,” Quantum Electron. 48, 325–331 (2018).
[Crossref]

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

Koechner, W.

W. Koechner, “Laser amplifier,” in Solid-State Laser Engineering, Springer Series in Optical Sciences (Springer, 2006), pp. 156–209.

Korn, G.

A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, “Subexawatt few-cycle lightwave generation via multipetawatt pulse compression,” Opt. Commun. 291, 299–303 (2013).
[Crossref]

Krausz, F.

Krushelnick, K.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[Crossref]

Liu, Y.

Lowdermilk, W. H.

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: theory and numerical analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
[Crossref]

Lozhkarev, V.

S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, “Suppression of small-scale self-focusing of high-intensity femtosecond radiation,” Appl. Phys. B 113, 147–151 (2013).
[Crossref]

S. Mironov, V. Lozhkarev, V. Ginzburg, and E. Khazanov, “High-efficiency second-harmonic generation of superintense ultrashort laser pulses,” Appl. Opt. 48, 2051–2057 (2009).
[Crossref]

Lozhkarev, V. V.

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Luchinin, G.

S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, “Suppression of small-scale self-focusing of high-intensity femtosecond radiation,” Appl. Phys. B 113, 147–151 (2013).
[Crossref]

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Maksimchuk, A.

Malevich, P.

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Matsuoka, T.

Mével, E.

Midorikawa, K.

Miller, J.

Mironov, S.

G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, “Single cycle thin film compressor opening the door to zeptosecond-exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).
[Crossref]

S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, “Suppression of small-scale self-focusing of high-intensity femtosecond radiation,” Appl. Phys. B 113, 147–151 (2013).
[Crossref]

S. Mironov, V. Lozhkarev, V. Ginzburg, and E. Khazanov, “High-efficiency second-harmonic generation of superintense ultrashort laser pulses,” Appl. Opt. 48, 2051–2057 (2009).
[Crossref]

Mironov, S. Y.

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Mourou, G.

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, “Single cycle thin film compressor opening the door to zeptosecond-exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).
[Crossref]

G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
[Crossref]

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity-300-TW laser at 0.1  Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

G. Mourou, G. Cheriaux, and C. Raider, “Device for generating a short duration laser pulse,” U.S. patent20110299152A1 (July31, 2009).

Mourou, G. A.

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

Murray, J. E.

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: theory and numerical analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
[Crossref]

Nees, J.

Nikolaus, B.

B. Nikolaus and D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1–2 (1983).
[Crossref]

Nisoli, M.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Novikov, E.

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Oberthaler, M.

M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[Crossref]

Pennington, D.

Perry, M. D.

Planchon, T.

Potemkin, A. K.

V. N. Ginzburg, A. A. Kochetkov, A. K. Potemkin, and E. A. Khazanov, “Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space,” Quantum Electron. 48, 325–331 (2018).
[Crossref]

Powell, H. T.

Pugžlys, A.

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Raider, C.

G. Mourou, G. Cheriaux, and C. Raider, “Device for generating a short duration laser pulse,” U.S. patent20110299152A1 (July31, 2009).

Renard, P. A.

Rodriguez, G.

Rolland, C.

Rousseau, P.

Rubenchik, A. M.

Rus, B.

A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, “Subexawatt few-cycle lightwave generation via multipetawatt pulse compression,” Opt. Commun. 291, 299–303 (2013).
[Crossref]

Salin, F.

Sartania, S.

Schreiber, J.

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

Sergeev, A.

G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, “Single cycle thin film compressor opening the door to zeptosecond-exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).
[Crossref]

Shank, C. V.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Shaykin, A.

S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, “Suppression of small-scale self-focusing of high-intensity femtosecond radiation,” Appl. Phys. B 113, 147–151 (2013).
[Crossref]

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Shaykin, A. A.

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

Shimizu, F.

F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19, 1097–1100 (1967).
[Crossref]

Shumakova, V.

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Simmons, W. W.

Spielmann, C.

Stolen, R. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Stuart, B. C.

Suda, A.

Svelto, O.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Szipöcs, R.

Tajima, T.

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

T. Tajima, “Laser acceleration in novel media,” Eur. Phys. J. Spec. Top. 223, 1037–1044 (2014).
[Crossref]

G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
[Crossref]

T. Tajima and J. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
[Crossref]

Talanov, V. I.

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” ZhETF Pisma Redaktsiiu 3, 471–476 (1966).

Taylor, A. J.

Tcherbakoff, O.

Teng, H.

Tietbohl, G.

Tomlinson, W. J.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Turitsyn, S. K.

Valdmanis, J. A.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

Vergino, M.

Voronin, A.

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Voronin, A. A.

A. A. Voronin and A. M. Zheltikov, “Power-scalable subcycle pulses from laser filaments,” Sci. Rep. 7, 36263 (2017).
[Crossref]

A. A. Voronin and A. M. Zheltikov, “Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold,” Phys. Rev. A 94, 023824 (2016).
[Crossref]

A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, “Subexawatt few-cycle lightwave generation via multipetawatt pulse compression,” Opt. Commun. 291, 299–303 (2013).
[Crossref]

Wei, Z.

Wheeler, J.

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

Yakovlev, I. V.

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

Yamaguchi, S.

Yan, X.

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

Yanovsky, V.

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

Zhao, K.

Zheltikov, A. M.

A. A. Voronin and A. M. Zheltikov, “Power-scalable subcycle pulses from laser filaments,” Sci. Rep. 7, 36263 (2017).
[Crossref]

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

A. A. Voronin and A. M. Zheltikov, “Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold,” Phys. Rev. A 94, 023824 (2016).
[Crossref]

A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, “Subexawatt few-cycle lightwave generation via multipetawatt pulse compression,” Opt. Commun. 291, 299–303 (2013).
[Crossref]

Zhong, S.

Zhou, M.

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

S. Mironov, V. Lozhkarev, G. Luchinin, A. Shaykin, and E. Khazanov, “Suppression of small-scale self-focusing of high-intensity femtosecond radiation,” Appl. Phys. B 113, 147–151 (2013).
[Crossref]

Appl. Phys. Lett. (7)

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical kerr effect,” Appl. Phys. Lett. 14, 140–143 (1969).
[Crossref]

D. Grischkowsky and A. Balant, “Optical pulse compression based on enhanced frequency chirping,” Appl. Phys. Lett. 41, 1–3 (1982).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982).
[Crossref]

B. Nikolaus and D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1–2 (1983).
[Crossref]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, “Optical pulse compression to 8  fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

M. Oberthaler and R. A. Hopfel, “Special narrowing of ultrashort laser pulses by self phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[Crossref]

Eur. Phys. J. Spec. Top. (2)

T. Tajima, “Laser acceleration in novel media,” Eur. Phys. J. Spec. Top. 223, 1037–1044 (2014).
[Crossref]

G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, “Single cycle thin film compressor opening the door to zeptosecond-exawatt physics,” Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Y. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, and S. Fadeev, “Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 18, 7–13 (2012).
[Crossref]

J. Appl. Phys. (1)

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: theory and numerical analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A. Pugžlys, “Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk,” Nat. Commun. 7, 12877 (2016).
[Crossref]

Opt. Commun. (2)

A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G. Korn, “Subexawatt few-cycle lightwave generation via multipetawatt pulse compression,” Opt. Commun. 291, 299–303 (2013).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Plasmas (1)

M. Zhou, X. Yan, G. Mourou, J. Wheeler, J. Bin, J. Schreiber, and T. Tajima, “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).
[Crossref]

Phys. Rev. A (2)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[Crossref]

A. A. Voronin and A. M. Zheltikov, “Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold,” Phys. Rev. A 94, 023824 (2016).
[Crossref]

Phys. Rev. Lett. (3)

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

T. Tajima and J. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
[Crossref]

F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19, 1097–1100 (1967).
[Crossref]

Quantum Electron. (2)

S. Y. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, “Using self-phase modulation for temporal compression of intense femtosecond laser pulses,” Quantum Electron. 47, 614–619 (2017).
[Crossref]

V. N. Ginzburg, A. A. Kochetkov, A. K. Potemkin, and E. A. Khazanov, “Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space,” Quantum Electron. 48, 325–331 (2018).
[Crossref]

Sci. Rep. (1)

A. A. Voronin and A. M. Zheltikov, “Power-scalable subcycle pulses from laser filaments,” Sci. Rep. 7, 36263 (2017).
[Crossref]

Science (1)

G. Mourou and T. Tajima, “More intense, shorter pulses,” Science 331, 41–42 (2011).
[Crossref]

ZhETF Pisma Redaktsiiu (1)

V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” ZhETF Pisma Redaktsiiu 3, 471–476 (1966).

Other (7)

G. Mourou, G. Cheriaux, and C. Raider, “Device for generating a short duration laser pulse,” U.S. patent20110299152A1 (July31, 2009).

“pyNLO: Nonlinear optics modeling for Python,” 2015, https://pynlo.readthedocs.io/en/latest/index.html .

“Extreme Light Infrastructure (ELI),” 2018, https://eli-laser.eu/ .

“Station of Extreme Light (SEL),” 2018, https://indico.sinap.ac.cn/ .

G. Mourou and T. Tajima, eds., Zetta-Exawatt Science and Technology, vol. 223 of European Physical Journal Special Topics (Springer, 2014).

R. W. Boyd, “Processes resulting from the intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 7, pp. 329–390.

W. Koechner, “Laser amplifier,” in Solid-State Laser Engineering, Springer Series in Optical Sciences (Springer, 2006), pp. 156–209.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the LASERIX experiment showing the attenuation scheme, phase compensation, and spectral and temporal diagnostics.
Fig. 2.
Fig. 2. (a) Laser spectrum and (b) pulse duration with (red) and without (blue) the 0.5 mm FS wafers in the beam. The spectral broadening (a) and pulse compression (b) shown here are measured by the fiber spectrometer and Wizzler (SRSI), respectively.
Fig. 3.
Fig. 3. Schematic of the HERCULES experiment showing the attenuation scheme, focal spot imaging, and spectral diagnostics.
Fig. 4.
Fig. 4. Average horizontal focal spot line-out at the max signal value (a) for initial (blue) and spectrally broadened (red) pulses and sample focal spots of the (b) initial and (c) broadened pulses. The shading in (a) represents the standard deviation of all broadened (light red) and initial (light blue) focal spot line-outs. The overlays of the line-out location on the initial focal spot and the spot after spectral broadening are shown in (b) and (c), respectively.

Metrics