Abstract

In this paper we numerically study supercontinuum generation by pumping a silicon nitride waveguide, with two zero-dispersion wavelengths, with femtosecond pulses. The waveguide dispersion is designed so that the pump pulse is in the normal-dispersion regime. We show that because of self-phase modulation, the initial pulse broadens into the anomalous-dispersion regime, which is sandwiched between the two normal-dispersion regimes, and here a soliton is formed. The interaction of the soliton and the broadened pulse in the normal-dispersion regime causes additional spectral broadening through formation of dispersive waves by non-degenerate four-wave mixing and cross-phase modulation. This broadening occurs mainly towards the second normal-dispersion regime. We show that pumping in either normal-dispersion regime allows broadening towards the other normal-dispersion regime. This ability to steer the continuum extension towards the direction of the other normal-dispersion regime beyond the sandwiched anomalous-dispersion regime underlies the directional supercontinuum notation. We numerically confirm the approach in a standard silica microstructured fiber geometry with two zero-dispersion wavelengths.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation to 4.5  μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550  nm

Irnis Kubat, Christian S. Agger, Peter Morten Moselund, and Ole Bang
J. Opt. Soc. Am. B 30(10) 2743-2757 (2013)

The role of pump incoherence in continuous-wave supercontinuum generation

Frédérique Vanholsbeeck, Sonia Martin-Lopez, Miguel González-Herráez, and Stéphane Coen
Opt. Express 13(17) 6615-6625 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription