Abstract

Phase noise reduction in an optical phase-locked loop is investigated using an acousto-optic actuator external to the laser cavity and primary stabilization lock. This method does not require modification of the laser cavity or primary lock and is compatible with continuous frequency tuning schemes for a laser locked to a femto-second frequency comb [J. Opt. Soc. Am. B 26, 1276 (2009) [CrossRef]  ; Opt. Lett. 40, 4372 (2015) [CrossRef]  ]. We achieve a cross-over frequency of 275 kHz and we demonstrate a single side band phase noise of 92dBc/Hz at a 10 kHz offset. Using two independently tunable lasers equipped with this locking system, we demonstrate quantum state manipulation of ultra-cold Li6 dimers using stimulated Raman adiabatic passage.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye
Opt. Lett. 37(12) 2196-2198 (2012)

Widely tunable, single-mode optical frequency synthesizer with a 100 kHz uncertainty

Arthur K. Mills, Yi-Fei Chen, Kirk W. Madison, and David J. Jones
J. Opt. Soc. Am. B 26(7) 1276-1280 (2009)

Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator

William C. Swann, Esther Baumann, Fabrizio R. Giorgetta, and Nathan R. Newbury
Opt. Express 19(24) 24387-24395 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
  2. K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
    [Crossref]
  3. K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
    [Crossref]
  4. F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 1–4 (2008).
    [Crossref]
  5. J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
    [Crossref]
  6. J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
    [Crossref]
  7. D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94, 429–435 (2009).
    [Crossref]
  8. A. M. Marino and C. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
    [Crossref]
  9. J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
    [Crossref]
  10. H. Müller, S.-W. Chiow, Q. Long, and S. Chu, “Phase-locked, low-noise, frequency agile titanium: sapphire lasers for simultaneous atom interferometers,” Opt. Lett. 31, 202–204 (2006).
    [Crossref]
  11. M. Zhu and J. L. Hall, “Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer,” J. Opt. Soc. Am. B 10, 802–816 (1993).
    [Crossref]
  12. S. Wey Chiow, S. Herrmann, H. Müller, and S. Chu, “6  W, 1  kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17, 5246–5250 (2009).
    [Crossref]
  13. J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24, 1838–1840 (1999).
    [Crossref]
  14. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [Crossref]
  15. M. J. Martin, “Quantum metrology and many-body physics: pushing the frontier of the optical lattice clock,” Ph.D. thesis (University of Colorado, 2013).
  16. A. K. Mills, Y.-F. Chen, K. W. Madison, and D. J. Jones, “Widely tunable, single-mode optical frequency synthesizer with a 100  kHz uncertainty,” J. Opt. Soc. Am. B 26, 1276–1280 (2009).
    [Crossref]
  17. W. Gunton, M. Semczuk, and K. W. Madison, “Method for independent and continuous tuning of n lasers phase-locked to the same frequency comb,” Opt. Lett. 40, 4372–4375 (2015).
    [Crossref]
  18. M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
    [Crossref]
  19. W. Bowden, W. Gunton, M. Semczuk, K. Dare, and K. W. Madison, “An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li,” Rev. Sci. Instrum. 87, 043111 (2016).
    [Crossref]
  20. W. Gunton, M. Semczuk, and K. W. Madison, “Realization of BEC-BCS-crossover physics in a compact oven-loaded magneto-optic-trap apparatus,” Phys. Rev. A 88, 023624 (2013).
    [Crossref]
  21. M. Semczuk, W. Gunton, W. Bowden, and K. W. Madison, “Anomalous behavior of dark states in quantum gases of Li6,” Phys. Rev. Lett. 113, 055302 (2014).
    [Crossref]
  22. R. T. Weverka and K. H. Wagner, “Wide-angular aperture acousto-optic Bragg cell,” Proc. SPIE 1562, 66–72 (1991).
    [Crossref]
  23. J. Xu, R. T. Weverka, and K. H. Wagner, “Wide angular aperture lithium niobate acousto-optic Bragg cells,” Proc. SPIE 2240, 96–108(1994).
    [Crossref]

2016 (1)

W. Bowden, W. Gunton, M. Semczuk, K. Dare, and K. W. Madison, “An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li,” Rev. Sci. Instrum. 87, 043111 (2016).
[Crossref]

2015 (1)

2014 (1)

M. Semczuk, W. Gunton, W. Bowden, and K. W. Madison, “Anomalous behavior of dark states in quantum gases of Li6,” Phys. Rev. Lett. 113, 055302 (2014).
[Crossref]

2013 (2)

W. Gunton, M. Semczuk, and K. W. Madison, “Realization of BEC-BCS-crossover physics in a compact oven-loaded magneto-optic-trap apparatus,” Phys. Rev. A 88, 023624 (2013).
[Crossref]

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

2010 (1)

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

2009 (4)

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94, 429–435 (2009).
[Crossref]

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

S. Wey Chiow, S. Herrmann, H. Müller, and S. Chu, “6  W, 1  kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17, 5246–5250 (2009).
[Crossref]

A. K. Mills, Y.-F. Chen, K. W. Madison, and D. J. Jones, “Widely tunable, single-mode optical frequency synthesizer with a 100  kHz uncertainty,” J. Opt. Soc. Am. B 26, 1276–1280 (2009).
[Crossref]

2008 (4)

A. M. Marino and C. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
[Crossref]

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

2007 (1)

K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

2006 (1)

1999 (2)

J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24, 1838–1840 (1999).
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

1998 (1)

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

1994 (1)

J. Xu, R. T. Weverka, and K. H. Wagner, “Wide angular aperture lithium niobate acousto-optic Bragg cells,” Proc. SPIE 2240, 96–108(1994).
[Crossref]

1993 (1)

1991 (1)

R. T. Weverka and K. H. Wagner, “Wide-angular aperture acousto-optic Bragg cell,” Proc. SPIE 1562, 66–72 (1991).
[Crossref]

Aldegunde, J.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

Benson, O.

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94, 429–435 (2009).
[Crossref]

Bergquist, J. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Bouloufa, N.

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Bourassin-Bouchet, C.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Bowden, W.

W. Bowden, W. Gunton, M. Semczuk, K. Dare, and K. W. Madison, “An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li,” Rev. Sci. Instrum. 87, 043111 (2016).
[Crossref]

M. Semczuk, W. Gunton, W. Bowden, and K. W. Madison, “Anomalous behavior of dark states in quantum gases of Li6,” Phys. Rev. Lett. 113, 055302 (2014).
[Crossref]

Chen, Y.-F.

Chiow, S.-W.

Chu, S.

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Danzl, J. G.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Dare, K.

W. Bowden, W. Gunton, M. Semczuk, K. Dare, and K. W. Madison, “An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li,” Rev. Sci. Instrum. 87, 043111 (2016).
[Crossref]

Dattani, N. S.

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

De Miranda, M. H.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Denschlag, J. H.

F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Dulieu, O.

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Grimm, R.

F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Gunton, W.

W. Bowden, W. Gunton, M. Semczuk, K. Dare, and K. W. Madison, “An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li,” Rev. Sci. Instrum. 87, 043111 (2016).
[Crossref]

W. Gunton, M. Semczuk, and K. W. Madison, “Method for independent and continuous tuning of n lasers phase-locked to the same frequency comb,” Opt. Lett. 40, 4372–4375 (2015).
[Crossref]

M. Semczuk, W. Gunton, W. Bowden, and K. W. Madison, “Anomalous behavior of dark states in quantum gases of Li6,” Phys. Rev. Lett. 113, 055302 (2014).
[Crossref]

W. Gunton, M. Semczuk, and K. W. Madison, “Realization of BEC-BCS-crossover physics in a compact oven-loaded magneto-optic-trap apparatus,” Phys. Rev. A 88, 023624 (2013).
[Crossref]

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

Gustavsson, M.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Hall, J. L.

Haller, E.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Hart, R.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Haw, M.

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

Herrmann, S.

Höckel, D.

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94, 429–435 (2009).
[Crossref]

Hutson, J. M.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

Itano, W. M.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

Jin, D. S.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Jones, D. J.

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

A. K. Mills, Y.-F. Chen, K. W. Madison, and D. J. Jones, “Widely tunable, single-mode optical frequency synthesizer with a 100  kHz uncertainty,” J. Opt. Soc. Am. B 26, 1276–1280 (2009).
[Crossref]

Julienne, P. S.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Kim, J.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

King, B. E.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

Kotochigova, S.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Landragin, A.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Lang, F.

F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Le Gouët, J.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Leibfried, D.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

Li, X.

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

Long, Q.

Lours, M.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Madison, K. W.

W. Bowden, W. Gunton, M. Semczuk, K. Dare, and K. W. Madison, “An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li,” Rev. Sci. Instrum. 87, 043111 (2016).
[Crossref]

W. Gunton, M. Semczuk, and K. W. Madison, “Method for independent and continuous tuning of n lasers phase-locked to the same frequency comb,” Opt. Lett. 40, 4372–4375 (2015).
[Crossref]

M. Semczuk, W. Gunton, W. Bowden, and K. W. Madison, “Anomalous behavior of dark states in quantum gases of Li6,” Phys. Rev. Lett. 113, 055302 (2014).
[Crossref]

W. Gunton, M. Semczuk, and K. W. Madison, “Realization of BEC-BCS-crossover physics in a compact oven-loaded magneto-optic-trap apparatus,” Phys. Rev. A 88, 023624 (2013).
[Crossref]

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

A. K. Mills, Y.-F. Chen, K. W. Madison, and D. J. Jones, “Widely tunable, single-mode optical frequency synthesizer with a 100  kHz uncertainty,” J. Opt. Soc. Am. B 26, 1276–1280 (2009).
[Crossref]

Marino, A. M.

A. M. Marino and C. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
[Crossref]

Mark, M. J.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Martin, M. J.

M. J. Martin, “Quantum metrology and many-body physics: pushing the frontier of the optical lattice clock,” Ph.D. thesis (University of Colorado, 2013).

Meekhof, D. M.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

Mills, A. K.

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

A. K. Mills, Y.-F. Chen, K. W. Madison, and D. J. Jones, “Widely tunable, single-mode optical frequency synthesizer with a 100  kHz uncertainty,” J. Opt. Soc. Am. B 26, 1276–1280 (2009).
[Crossref]

Monroe, C.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

Müller, H.

Nägerl, H. C.

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

Nägerl, H.-C.

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Neyenhuis, B.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Ni, K. K.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Ospelkaus, S.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Pe’er, A.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Pereira Dos Santos, F.

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Ritsch, H.

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

Scholz, M.

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94, 429–435 (2009).
[Crossref]

Semczuk, M.

W. Bowden, W. Gunton, M. Semczuk, K. Dare, and K. W. Madison, “An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li,” Rev. Sci. Instrum. 87, 043111 (2016).
[Crossref]

W. Gunton, M. Semczuk, and K. W. Madison, “Method for independent and continuous tuning of n lasers phase-locked to the same frequency comb,” Opt. Lett. 40, 4372–4375 (2015).
[Crossref]

M. Semczuk, W. Gunton, W. Bowden, and K. W. Madison, “Anomalous behavior of dark states in quantum gases of Li6,” Phys. Rev. Lett. 113, 055302 (2014).
[Crossref]

W. Gunton, M. Semczuk, and K. W. Madison, “Realization of BEC-BCS-crossover physics in a compact oven-loaded magneto-optic-trap apparatus,” Phys. Rev. A 88, 023624 (2013).
[Crossref]

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

Straten, P. V.

K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Strauss, C.

F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Stroud, C.

A. M. Marino and C. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
[Crossref]

Thalhammer, G.

K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Wagner, K. H.

J. Xu, R. T. Weverka, and K. H. Wagner, “Wide angular aperture lithium niobate acousto-optic Bragg cells,” Proc. SPIE 2240, 96–108(1994).
[Crossref]

R. T. Weverka and K. H. Wagner, “Wide-angular aperture acousto-optic Bragg cell,” Proc. SPIE 1562, 66–72 (1991).
[Crossref]

Weverka, R. T.

J. Xu, R. T. Weverka, and K. H. Wagner, “Wide angular aperture lithium niobate acousto-optic Bragg cells,” Proc. SPIE 2240, 96–108(1994).
[Crossref]

R. T. Weverka and K. H. Wagner, “Wide-angular aperture acousto-optic Bragg cell,” Proc. SPIE 1562, 66–72 (1991).
[Crossref]

Wey Chiow, S.

Wineland, D. J.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

Winkler, K.

F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

Witz, J.

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

Xu, J.

J. Xu, R. T. Weverka, and K. H. Wagner, “Wide angular aperture lithium niobate acousto-optic Bragg cells,” Proc. SPIE 2240, 96–108(1994).
[Crossref]

Ye, J.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24, 1838–1840 (1999).
[Crossref]

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Zhu, M.

Zirbel, J. J.

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Appl. Phys. B (1)

D. Höckel, M. Scholz, and O. Benson, “A robust phase-locked diode laser system for EIT experiments in cesium,” Appl. Phys. B 94, 429–435 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Res. Natl. Inst. Stand. Technol. (1)

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).

Nat. Phys. (1)

J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, “An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice,” Nat. Phys. 6, 265–270 (2010).
[Crossref]

Opt. Commun. (1)

J. Le Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. Pereira Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282, 977–980 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (2)

M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. K. Mills, D. J. Jones, and K. W. Madison, “High-resolution photoassociation spectroscopy of the 6Li23Σ g + state,” Phys. Rev. A 87, 052505 (2013).
[Crossref]

W. Gunton, M. Semczuk, and K. W. Madison, “Realization of BEC-BCS-crossover physics in a compact oven-loaded magneto-optic-trap apparatus,” Phys. Rev. A 88, 023624 (2013).
[Crossref]

Phys. Rev. Lett. (4)

M. Semczuk, W. Gunton, W. Bowden, and K. W. Madison, “Anomalous behavior of dark states in quantum gases of Li6,” Phys. Rev. Lett. 113, 055302 (2014).
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

K. Winkler, F. Lang, G. Thalhammer, P. V. Straten, R. Grimm, and J. H. Denschlag, “Coherent optical transfer of Feshbach molecules to a lower vibrational state,” Phys. Rev. Lett. 98, 1–4 (2007).
[Crossref]

F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, “Ultracold triplet molecules in the rovibrational ground state,” Phys. Rev. Lett. 101, 1–4 (2008).
[Crossref]

Proc. SPIE (2)

R. T. Weverka and K. H. Wagner, “Wide-angular aperture acousto-optic Bragg cell,” Proc. SPIE 1562, 66–72 (1991).
[Crossref]

J. Xu, R. T. Weverka, and K. H. Wagner, “Wide angular aperture lithium niobate acousto-optic Bragg cells,” Proc. SPIE 2240, 96–108(1994).
[Crossref]

Rev. Sci. Instrum. (2)

W. Bowden, W. Gunton, M. Semczuk, K. Dare, and K. W. Madison, “An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li,” Rev. Sci. Instrum. 87, 043111 (2016).
[Crossref]

A. M. Marino and C. Stroud, “Phase-locked laser system for use in atomic coherence experiments,” Rev. Sci. Instrum. 79, 013104 (2008).
[Crossref]

Science (2)

J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, “Quantum gas of deeply bound ground state molecules,” Science 321, 1062–1066 (2008).
[Crossref]

K. K. Ni, S. Ospelkaus, M. H. De Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[Crossref]

Other (1)

M. J. Martin, “Quantum metrology and many-body physics: pushing the frontier of the optical lattice clock,” Ph.D. thesis (University of Colorado, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) System and (b) and (c) component schematics for the AOM-based phase-locked loop. See text for details.
Fig. 2.
Fig. 2. (a), (b) Power spectrum and (c) SSB phase noise of out-of-loop heterodyne measurements between TS1 and the FFC. The power spectrum resolution bandwidth is 300 Hz for the wide span and 1 Hz for the narrow spans shown in the insets. In (a), the power spectrum is shown for two locking conditions: with only the lock of the TS1 cavity length engaged (subscript PZT) and with both the PZT and the external AOM-based lock engaged (subscript AOM). In (b), both the PZT and the external AOM-based locks are engaged, and the power spectra correspond to two different out-of-loop measurements: one is a measurement of the heterodyne generated by a copy of the fields incident on the locking photodiode ( AOM L ), and the other is a measurement of the heterodyne between the FCC and a copy of the corrected TS1 field sent to the experiment and generated by a second AOM ( AOM E ). The SSB phase noise is shown in (c) for the PZT lock (blue) as well as the two out-of-loop measurements of AOM L (black) and AOM E (red).
Fig. 3.
Fig. 3. Power spectrum of the heterodyne beat between the experiment arms of TS1 and TS2 for three frequency differences, | Δ f | = | f 2 f 1 | | N M | · f rep , where TS1 (TS2) is locked to the N th ( M th ) comb element and f rep = 125.6 MHz is the FFC repetition rate. The exact separation depends on the frequency of the double pass AOM we use for scanning one of the lasers. The resolution bandwidth is 300 Hz for the wide span and 1 Hz for the narrow span. Jitter in the FFC pulse repetition rate, which defines the comb element spacing, is expected to produce frequency/phase fluctuations in the heterodyne between the two Ti:sapphire lasers that increase with | N M | and thus | Δ f | . However, we do not resolve an increase in the phase noise for frequency separations from 0.3 to 12.2 GHz. The elevated noise floor of the black trace and the slight asymmetry of the blue trace result from the frequency dependence of the detector noise floor and a slow polarization drift in our fiber combiners, respectively.
Fig. 4.
Fig. 4. Li 6 Feshbach molecule number following a forward and then reverse STIRAP pulse sequence that transforms the molecular state from | Ψ = | FM to | g and back to | FM as function of the frequency of the probe laser frequency (with ν p 0 = 366861.253 GHz ). Here, ν S = 366885.6354 GHz . The left inset shows a schematic of the molecular potentials, states, and the frequency (energy) of the probe and Stokes fields. The transition Rabi frequencies (proportional to the probe and Stokes laser amplitudes) versus time and the probability amplitude of the components of the corresponding state population is shown in the right inset. The initial Feshbach molecule number is 2 × 10 4 , and without fully optimizing the pulse sequence, we achieve a round-trip efficiency of more than 50% when the two-photon resonance condition is satisfied and with pulse durations of 10 μs full width at half-maximum. This data is the average of 10 scans. A pulse of light resonant with the free atoms and Feshbach molecules was used to purify the deeply bound molecular ensemble before the reverse STIRAP pulse was applied.

Tables (1)

Tables Icon

Table 1. Comparision of Different Locking Configurations Reported Including the Locking Bandwidth and, Where Available, the Power Spectral Density Achieved at Various Offsets from the Carrier Inferred from an Out-of-Loop Optical Heterodyne and the Reported Resolution Bandwidth a

Metrics