Abstract

Suspended-core fibers (SCFs) with a submicron diameter hole in the core offer interesting new possibilities in dispersion management, light confinement, and nonlinear applications. We discuss the geometric demands and options of fused silica-based nanohole SCFs suitable for all-normal dispersion (ANDi) and compare them to the possibilities provided by photonic crystal fibers (PCFs). We show that nanohole SCFs extend the options PCFs provide, enabling ANDi further into the near infrared. In addition, fabrication conditions are evaluated, a reliable fabrication scheme is outlined, and ANDi nanohole SCFs are demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation

Alexander Hartung, Alexander M. Heidt, and Hartmut Bartelt
Opt. Express 19(8) 7742-7749 (2011)

Highly nonlinear silica suspended core fibers

Liang Dong, Brian K. Thomas, and Libin Fu
Opt. Express 16(21) 16423-16430 (2008)

Dispersion characteristics of a suspended-core optical fiber infiltrated with water

Khoa Dinh Xuan, Lanh Chu Van, Van Cao Long, Quang Ho Dinh, Luu Van Xuan, Marek Trippenbach, and Ryszard Buczynski
Appl. Opt. 56(4) 1012-1019 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
    [Crossref]
  2. H. Wang, C. P. Fleming, and A. M. Rollins, “Ultrahigh-resolution optical coherence tomography at 1.15  µm using photonic crystal fiber with no zero-dispersion wavelengths,” Opt. Express 15, 3085–3092 (2007).
    [Crossref]
  3. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
    [Crossref]
  4. H. Tu, Y. Liu, X. Liu, and D. Turchinovich, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20, 1113–1128 (2012).
    [Crossref]
  5. Y. Liu, Y. Zhao, J. Lyngsø, S. You, W. L. Wilson, H. Tu, and S. A. Boppart, “Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation,” J. Lightwave Technol. 33, 1814–1820 (2015).
    [Crossref]
  6. I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, A. Díez, and M. Andrés, “Femtosecond parabolic pulse shaping in normally dispersive optical fibers,” Opt. Express 21, 17769–17785 (2013).
    [Crossref]
  7. I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, J. A. Andrade-Lucio, A. Díez, and M. Andrés, “Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber,” Opt. Express 22, 30234–30250 (2014).
    [Crossref]
  8. L. Zhang, L. Zhan, M. Qin, Z. Zou, Z. Wang, and J. Liu, “Large-region tunable optical bistability in saturable absorber-based single-frequency Brillouin fiber lasers,” J. Opt. Soc. Am. B 32, 1113–1119 (2015).
    [Crossref]
  9. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786–1792 (2007).
    [Crossref]
  10. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon. Rev. 7, 628–645 (2013).
    [Crossref]
  11. S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
    [Crossref]
  12. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
    [Crossref]
  13. T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
    [Crossref]
  14. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5, 710–727 (2017).
    [Crossref]
  15. G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
    [Crossref]
  16. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
    [Crossref]
  17. M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
    [Crossref]
  18. L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
    [Crossref]
  19. A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19, 12275–12283 (2011).
    [Crossref]
  20. A. Hartung, A. M. Heidt, and H. Bartelt, “Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths,” Opt. Express 20, 13777–13788 (2012).
    [Crossref]
  21. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, M. Pang, R. Sopalla, M. H. Frosz, S. Poulain, M. Poulain, V. Cardin, J. C. Travers, and P. St. J. Russell, “Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores,” Opt. Lett. 41, 4245–4248 (2016).
    [Crossref]
  22. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  23. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
    [Crossref]
  24. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
    [Crossref]
  25. D. S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44, 2216–2219 (2019).
    [Crossref]

2019 (1)

2017 (1)

2016 (3)

2015 (2)

2014 (6)

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, J. A. Andrade-Lucio, A. Díez, and M. Andrés, “Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber,” Opt. Express 22, 30234–30250 (2014).
[Crossref]

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (4)

2007 (2)

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

1984 (1)

Abramski, K. M.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Aichele, C.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Andrade-Lucio, J. A.

Andrés, M.

Babic, F.

Bache, M.

Bang, O.

Bartelt, H.

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Bookey, H.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Boppart, S. A.

Bosman, G. W.

Bowen, P.

Buczynski, R.

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5, 710–727 (2017).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

Cardin, V.

Cheng, T.

Díez, A.

Dupont, S.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

Engelsholm, R. D.

Finger, M. A.

Fleming, C. P.

Fleming, J. W.

Frosz, M. H.

Gonzalo, I. B.

Grimm, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Hartung, A.

Heidt, A.

Heidt, A. M.

Hooper, L. E.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
[Crossref]

Iakushev, S. O.

Jiang, X.

Joly, N. Y.

Kaminski, C. F.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

Kar, A. K.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Kasztelanic, R.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Keiding, S. R.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

Kiwanuka, S.-S.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

Klimczak, M.

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5, 710–727 (2017).
[Crossref]

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

Knight, J. C.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
[Crossref]

Kobelke, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Krok, P.

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Liu, J.

Liu, L.

Liu, X.

Liu, Y.

Lyngsø, J.

Martynkien, T.

Moselund, P. M.

Mosley, P. J.

Muir, A. C.

Nagasaka, K.

Nishizawa, N.

Ohishi, Y.

Pang, M.

Poulain, M.

Poulain, S.

Pysz, D.

Qin, G.

Qin, M.

Qu, Z.

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

Radzewicz, C.

Rao, D. S. S.

Rohwer, E. G.

Rollins, A. M.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Russell, P. St. J.

Schuster, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Schwoerer, H.

Shulika, O. V.

Siwicki, B.

Skibinski, P.

Sobon, G.

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Sopalla, R.

Stepien, R.

Stepniewski, G.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Sukhoivanov, I. A.

Suzuki, T.

Taghizadeh, M. R.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Takayanagi, J.

Tong, H.

Travers, J. C.

Tu, H.

Turchinovich, D.

Unger, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Waddie, A. J.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Wadsworth, W. J.

Wang, H.

Wang, Z.

Wilson, W. L.

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

You, S.

Zhan, L.

Zhang, L.

Zhao, Y.

Zhou, B.

Zou, Z.

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
[Crossref]

Appl. Opt. (1)

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photon. Rev. 7, 628–645 (2013).
[Crossref]

Laser Phys. Lett. (2)

S. Dupont, Z. Qu, S.-S. Kiwanuka, L. E. Hooper, J. C. Knight, S. R. Keiding, and C. F. Kaminski, “Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre,” Laser Phys. Lett. 11, 075601 (2014).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Opt. Express (10)

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3  µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, A. Díez, and M. Andrés, “Femtosecond parabolic pulse shaping in normally dispersive optical fibers,” Opt. Express 21, 17769–17785 (2013).
[Crossref]

I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, J. A. Andrade-Lucio, A. Díez, and M. Andrés, “Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber,” Opt. Express 22, 30234–30250 (2014).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19, 12275–12283 (2011).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths,” Opt. Express 20, 13777–13788 (2012).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
[Crossref]

H. Wang, C. P. Fleming, and A. M. Rollins, “Ultrahigh-resolution optical coherence tomography at 1.15  µm using photonic crystal fiber with no zero-dispersion wavelengths,” Opt. Express 15, 3085–3092 (2007).
[Crossref]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
[Crossref]

H. Tu, Y. Liu, X. Liu, and D. Turchinovich, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20, 1113–1128 (2012).
[Crossref]

Opt. Lett. (4)

Photon. Res. (1)

Sci. Rep. (1)

M. Klimczak, G. Soboń, R. Kasztelanic, K. M. Abramski, and R. Buczyński, “Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser,” Sci. Rep. 6, 19284 (2016).
[Crossref]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. SCF example cross sections covering (a) the entire air hole region and (b) the core region. The design parameters $t$ (strut thickness), $D$ (incircle core diameter), and $d$ (hole diameter) are highlighted in (b).
Fig. 2.
Fig. 2. Impact of (a) the core diameter $D$ , (b) the hole diameter $d$ , and (c) the strut thickness $t$ on the dispersion for $n\; = \;{4}$ struts. In (a), $d\; = \;{0}$ and $t\; = \;D/{6}$ . In (b), $D\; = \;{1}\;{\rm \unicode{x00B5}{\rm m}}$ and $t\; = \;D/{6}$ . In (c), $D\; = \;{1}\;{\rm \unicode{x00B5}{\rm m}}$ and $d\; = \;{200}\;{\rm nm}$ . (d) The number of core modes as a function of strut thickness $t$ for $D\; = \;{1}\;{\rm \unicode{x00B5}{\rm m}}$ and $d\; = \;{230}\;{\rm nm}$ .
Fig. 3.
Fig. 3. Overview of the ANDi tunability for (a) single-mode nanohole SCFs with $n\; = \;{3}$ struts in comparison to (b) PCFs. (b) is taken from Ref. [12]. Note the different wavelength axes. When optimized for longer wavelengths, SCFs exhibit a perpetual redshift of the local ANDi maximum, whereas PCFs exhibit an onward flattening of the long wavelength dispersion edge and eventually a transition to anomalous dispersion. At the short wavelength edge, nanohole SCFs show a shoulder formation due to the adaption of the mode field to the central hole.
Fig. 4.
Fig. 4. (a) Exaggeration of the ANDi shoulder formation around 800 nm wavelength for large core diameters in combination with large hole diameters for $n\; = \;{3}$ struts. With increasing hole size, the dispersion resembles that of a small core size comparable to a single corner of the core. (c) The geometry of the core area with $d\; = \;{1100}\;{\rm nm}$ and (c) the modal distribution of one fundamental polarization mode at 800 nm wavelength.
Fig. 5.
Fig. 5. (a) Effective mode area at the MDW for nanohole SCFs and PCFs. Clearly visible is the inability of PCFs to shift the MDW beyond 1.3 µm due to the transition into the anomalous dispersion range. In addition, the effective mode area increases rapidly beyond 1 µm MDW due to the low air filling fraction required for dispersion management. Practically, this implies the loss of the guiding capability. In contrast, nanohole SCFs maintain their guiding capability and allow an MDW approaching 2 µm. (b) The strong increase of mode area is accompanied by a corresponding decrease of the nonlinear parameter.
Fig. 6.
Fig. 6. From left to right: scheme of the formation of the SCF structure during fiber drawing due to the inflation of the capillaries and the collapse of interstitial air regions.
Fig. 7.
Fig. 7. Realized nanohole SCFs with similar incircle core diameter $D\; = \;{1.8}\;{\rm \unicode{x00B5}{\rm m}}$ and different hole sizes $d$ of (a) 260 nm, (b) 430 nm, and (c) 550 nm. The scale bars indicate a length of 1 µm. The different hole sizes originate from different drawing temperatures of 2010°C, 2000°C, and 1990°C, respectively. (d)–(f) The respective calculated dispersion. Calculations are based on the actual cross section without approximation. The two dispersion curves correspond to the two fundamental polarization modes indicating a low birefringence.
Fig. 8.
Fig. 8. Realized polarization maintaining ANDi SCFs. (a) and (b) Scanning electron images and (c) and (d) corresponding calculated dispersion, respectively. The two dispersion curves correspond to the two fundamental polarization modes. Scale bars indicate a length of 1 µm. The legend shows the polarization direction with respect to the long core axis.

Metrics