Abstract

In our paper J. Opt. Soc. Am. B 34, 2128 (2017) [CrossRef]   in Section 2.C, the calculation of the layer-dependent electric field distribution is only valid for media with permittivity tensors that are diagonal in the lab frame, i.e., non-birefringent media. This erratum corrects Section 2.C such that the electric field distribution in birefringent media is calculated correctly. Further, Eqs. (20) and (33)–(36) are corrected. The associated MATLAB implementation has been updated.

© 2019 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Xu, L. T. Wood, and T. D. Golding, “Optical degeneracies in anisotropic layered media: Treatment of singularities in a 4 × 4 matrix formalism,” Phys. Rev. B 61, 1740–1743 (2000).
    [Crossref]
  2. N. C. Passler and A. Paarmann, “Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures,” J. Opt. Soc. Am. B 34, 2128–2139 (2017).
    [Crossref]
  3. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. B 69, 742–756 (1979).
    [Crossref]
  4. N. C. Passler and A. Paarmann, “Generalized 4 × 4 matrix algorithm for light propagation in anisotropic stratified media (Matlab files),” 2019, https://doi.org/10.5281/zenodo.601496 .
  5. M. Jeannin, “Generalized 4 × 4 matrix algorithm for light propagation in anisotropic stratified media (Python files),” 2019, https://doi.org/10.5281/zenodo.3417751 .
  6. N. C. Passler and A. Paarmann, “Layer-resolved transmittance and absorption of light propagating in arbitrarily anisotropic stratified media” (to be published).

2017 (1)

2000 (1)

W. Xu, L. T. Wood, and T. D. Golding, “Optical degeneracies in anisotropic layered media: Treatment of singularities in a 4 × 4 matrix formalism,” Phys. Rev. B 61, 1740–1743 (2000).
[Crossref]

1979 (1)

P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. B 69, 742–756 (1979).
[Crossref]

Golding, T. D.

W. Xu, L. T. Wood, and T. D. Golding, “Optical degeneracies in anisotropic layered media: Treatment of singularities in a 4 × 4 matrix formalism,” Phys. Rev. B 61, 1740–1743 (2000).
[Crossref]

Paarmann, A.

Passler, N. C.

Wood, L. T.

W. Xu, L. T. Wood, and T. D. Golding, “Optical degeneracies in anisotropic layered media: Treatment of singularities in a 4 × 4 matrix formalism,” Phys. Rev. B 61, 1740–1743 (2000).
[Crossref]

Xu, W.

W. Xu, L. T. Wood, and T. D. Golding, “Optical degeneracies in anisotropic layered media: Treatment of singularities in a 4 × 4 matrix formalism,” Phys. Rev. B 61, 1740–1743 (2000).
[Crossref]

Yeh, P.

P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. B 69, 742–756 (1979).
[Crossref]

J. Opt. Soc. Am. B (2)

Phys. Rev. B (1)

W. Xu, L. T. Wood, and T. D. Golding, “Optical degeneracies in anisotropic layered media: Treatment of singularities in a 4 × 4 matrix formalism,” Phys. Rev. B 61, 1740–1743 (2000).
[Crossref]

Other (3)

N. C. Passler and A. Paarmann, “Generalized 4 × 4 matrix algorithm for light propagation in anisotropic stratified media (Matlab files),” 2019, https://doi.org/10.5281/zenodo.601496 .

M. Jeannin, “Generalized 4 × 4 matrix algorithm for light propagation in anisotropic stratified media (Python files),” 2019, https://doi.org/10.5281/zenodo.3417751 .

N. C. Passler and A. Paarmann, “Layer-resolved transmittance and absorption of light propagating in arbitrarily anisotropic stratified media” (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (9)

Equations on this page are rendered with MathJax. Learn more.

γ i 13 = { μ i ε i 31 + ξ q i 1 μ i ε i 33 ξ 2 , q i 1 = q i 2 μ i ε i 31 + ξ q i 1 μ i ε i 33 ξ 2 μ i ε i 32 μ i ε i 33 ξ 2 γ i 12 , q i 1 q i 2 γ i 33 = { μ i ε i 31 + ξ q i 3 μ i ε i 33 ξ 2 , q i 3 = q i 4 μ i ε i 31 + ξ q i 3 μ i ε i 33 ξ 2 + μ i ε i 32 μ i ε i 33 ξ 2 γ i 32 , q i 3 q i 4 .
γ ^ i j = γ i j | γ i j | ,
t p p = Γ 33 Γ 11 Γ 33 Γ 13 Γ 31
t s s = Γ 11 Γ 11 Γ 33 Γ 13 Γ 31
t p s = Γ 31 Γ 11 Γ 33 Γ 13 Γ 31
t s p = Γ 13 Γ 11 Γ 33 Γ 13 Γ 31 .
( E N + 1 + ) p  in = ( E t r a n s p / o E t r a n s s / e E r e f l p / o E r e f l s / e ) = ( t p ( p / o ) t p ( s / e ) 0 0 ) ( E N + 1 + ) s i n = ( E t r a n s p / o E t r a n s s / e E r e f l p / o E r e f l s / e ) = ( t s ( p / o ) t s ( s / e ) 0 0 ) ,
E i ( z ) = P i ( z ) E i = ( e i ω c q i 1 z 0 0 0 0 e i ω c q i 2 z 0 0 0 0 e i ω c q i 3 z 0 0 0 0 e i ω c q i 4 z ) E i ,
( E t r a n s p / o ) p / s i n = ( E t r a n s p / o ) p / s i n ( γ ^ i 11 γ ^ i 12 γ ^ i 13 ) ( E t r a n s s / e ) p / s i n = ( E t r a n s s / e ) p / s i n ( γ ^ i 21 γ ^ i 22 γ ^ i 23 ) ( E r e f l p / o ) p / s i n = ( E r e f l p / o ) p / s i n ( γ ^ i 31 γ ^ i 32 γ ^ i 33 ) ( E r e f l s / e ) p / s i n = ( E r e f l s / e ) p / s i n ( γ ^ i 41 γ ^ i 42 γ ^ i 43 ) ,