Abstract

This work presents a study of the short-term stability properties of Rb atomic clocks based on coherent population trapping (CPT) under dynamic excitation of a CPT resonance in cells without buffer gas. It is demonstrated that in an optical cell with anti-relaxation coating of its inner walls, the best stability is achieved at the scanning frequency of the frequency difference of the bichromatic pump field equal to 2 kHz at the resonance width of 450 Hz. In cells without a wall coating, the optimal scanning frequency range is found to be 1.2–2.8 kHz at the resonance width of 29 kHz. Examination of the slope of the stabilization system’s discriminant curve at zero error signal for buffer-gas-free cells uncovered an amount of correlation between the discriminant curve slope and atomic clock stability. It is demonstrated that the highest stability of atomic clocks in dynamic excitation mode is achieved at a ratio of scanning frequency and amplitude around 1.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks

E. Kroemer, M. Abdel Hafiz, V. Maurice, B. Fouilland, C. Gorecki, and R. Boudot
Opt. Express 23(14) 18373-18380 (2015)

Optimization of FM spectroscopy parameters for a frequency locking loop in small scale CPT based atomic clocks

I. Ben-Aroya, M. Kahanov, and G. Eisenstein
Opt. Express 15(23) 15060-15065 (2007)

Performance of a prototype atomic clock based on lin‖lin coherent population trapping resonances in Rb atomic vapor

Eugeniy E. Mikhailov, Travis Horrom, Nathan Belcher, and Irina Novikova
J. Opt. Soc. Am. B 27(3) 417-422 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription