Abstract

A current challenge in photonics is to design new versatile photodetectors based on optical-rectification-induced photovoltage; these are more attractive than classical photodetectors because they do not rely on band-to-band transitions. Identification of the origin of the photovoltage detected under intense illumination can sometimes be confusing due to the competition between several nonlinear processes. Examples of such processes are optical rectification, multiphoton absorption, and photothermal heating, all of which may result in the detection of DC photovoltage in a capacitor configuration. Herein, differences between the resulting photovoltage from these processes are analyzed and techniques are proposed to distinguish between optical-rectification-induced DC photovoltage and the photovoltage resulting from alternative effects.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controllable color display induced by excitation-intensity-dependent competition between second and third harmonic generation in ZnO nanorods

Jun Dai, Mao-Hui Yuan, Jian-Hua Zeng, Qiao-Feng Dai, Sheng Lan, Chai Xiao, and Shao-Long Tie
Appl. Opt. 53(2) 189-194 (2014)

K4GeP4Se12: a case for phase-change nonlinear optical chalcogenide

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis
Opt. Lett. 38(8) 1316-1318 (2013)

Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces

Gregor H. Welsh and Klaas Wynne
Opt. Express 17(4) 2470-2480 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical Rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
    [Crossref]
  2. A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23, 867 (1998).
    [Crossref]
  3. J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon. Technol. Lett. 19, 2012–2014 (2007).
    [Crossref]
  4. Y. Uchiho, M. Shimojo, and K. Kajikawa, “Electro-optic effect and optical rectification in gold nanoparticles immobilized above a gold surface,” J. Phys. D 43, 495101 (2010).
    [Crossref]
  5. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  6. B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
    [Crossref]
  7. J. Zhang, L. Shi, Y. Wang, E. Cassan, and X. Zhang, “On-chip high-speed optical detection based on an optical rectification scheme in silicon plasmonic platform,” Opt. Express 22, 27504–27514 (2014).
    [Crossref]
  8. Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quantum Electron. 20, 6 (2014).
  9. E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
    [Crossref]
  10. D. Y. Goswami, S. Vijayaraghavan, S. Lu, and G. Tamm, “New and emerging developments in solar energy,” Solar Energy 76, 33–43 (2004).
    [Crossref]
  11. R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
    [Crossref]
  12. J. M. Nunzi, “Requirements for a rectifying antenna solar cell technology,” Proc. SPIE 7712, 771204 (2010).
    [Crossref]
  13. R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” App. Phys. Lett. 95, 021107 (2009).
    [Crossref]
  14. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” App. Phys. Lett. 84, 4854–4856 (2004).
    [Crossref]
  15. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, “Quick-response film photodetector of high-power laser radiation based on the optical rectification effect,” Tech. Phys. 51, 1190–1196 (2006).
    [Crossref]
  16. T. Baehr-Jones, J. Witzens, and M. Hochberg, “Theoretical study of optical rectification at radio frequencies in a slot waveguide,” IEEE J. Quantum Electron. 46, 1634–1641 (2010).
    [Crossref]
  17. S. M. A. Mirzaee, B. S. Rao, and J. M. Nunzi, “Three photon absorption detection using polymer photo- diodes,” Proc. SPIE 8915, 891514 (2013).
    [Crossref]
  18. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11, 5426–5430 (2011).
    [Crossref]
  19. J. C. Riviere, “Contact potential difference measurements by the Kelvin method,” Proc. Phys. Soc. London Sect. B 70, 676–686 (1957).
    [Crossref]
  20. B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, and E. Buncel, “Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review,” Polym. Int. 61, 342–354 (2012).
    [Crossref]
  21. F. Liu and J. M. Nunzi, “Enhanced organic light emitting diode and solar cell performances using silver nano-clusters,” Org. Elec. 13, 1623–1632 (2012).
    [Crossref]
  22. S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
    [Crossref]
  23. Y. Tong, X. Zhao, M. C. Tan, and R. Zhao, “Cost-effective and highly photoresponsive nanophosphor- P3HT photoconductive nanocomposite for near-infrared detection,” Sci. Rep. 5, 16761 (2015).
    [Crossref]
  24. W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81, 155315 (2010).
    [Crossref]
  25. S. V. Novikov, A. R. Tameev, A. V. Vannikov, and J. M. Nunzi, “Estimation of the concentration of deep traps in organic photoconductors using two-photon absorption,” Proc. SPIE 7993, 799321 (2011).
    [Crossref]
  26. R. A. Street, A. Krakaris, and S. R. Cowan, “Recombination through different types of localized states in organic solar cells,” Adv. Funct. Mater. 22, 4608–4619 (2012).
    [Crossref]
  27. C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. M. Nunzi, “Study of orientation induced molecular rectification in polymer films,” Opt. Mat. 9, 316–322 (1998).
    [Crossref]
  28. M. Akbi and A. Lefort, “Work function measurements of contact materials for industrial use,” J. Phys. D 31, 1301–1308 (1998).
    [Crossref]
  29. W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, “The work function of gold,” Surf. Sci. 5, 221–229 (1966).
    [Crossref]
  30. D. Burgess, P. C. Stair and E. Weitz, “Calculations of the surface temperature rise and desorption temperature in laser-induced thermal desorption,” J. Vac. Sci. Technol. A 4, 1362–1366 (1986).
    [Crossref]
  31. M. Akbi, “A method for measuring the photoelectric work function of contact materials versus temperature,” IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1293–1302 (2014).
    [Crossref]
  32. A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
    [Crossref]
  33. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett. 87, 091118 (2005).
    [Crossref]
  34. F. Nastos and J. E. Sipe, “Optical rectification and current injection in unbiased semiconductors,” Phys. Rev. B 82, 235204 (2010).
    [Crossref]
  35. V. L. Malevich, R. Adomavicius, and A. Krotkus, “THZ emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
    [Crossref]
  36. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express 18, 4939–4947 (2010).
    [Crossref]
  37. M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
    [Crossref]
  38. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980).
    [Crossref]
  39. F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
    [Crossref]
  40. G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36, 2572 (2011).
    [Crossref]
  41. T. Vicsek, Fractal Growth Phenomena (World Science, 1992).
  42. R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, “Fractal (scaling) clusters in thin gold films near the percolation threshold,” Phys. Rev. Lett. 49, 1441–1444 (1982).
    [Crossref]
  43. H. Wei and H. Eilers, “From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates,” J. Phys. Chem. Solids 70, 459–465 (2009).
    [Crossref]
  44. X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
    [Crossref]
  45. S. M. A. Mirzaee, O. Lebel, and J. M. Nunzi, “Simple unbiased hot-electron polarization-sensitive near-infrared photodetector,” ACS Appl. Mater. Interface 10, 11862–11871 (2018).
    [Crossref]
  46. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, 1999).
  47. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3634 (2004).
    [Crossref]
  48. N. Olivier, F. Aptel, K. Plamann, M. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18, 5028 (2010).
    [Crossref]
  49. P.-F. Brevet, Surface Second Harmonic Generation (PPUR presses polytechniques, 1997), p. 47.
  50. R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic-generation microscopy,” Phys. Rev. E 66, 067602 (2002).
    [Crossref]
  51. E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett. 63, 976–979 (1989).
    [Crossref]
  52. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
    [Crossref]
  53. T. Adhikari, Z. G. Rahami, J. M. Nunzi, and O. Lebel, “Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives,” Org. Electron. 34, 146–156 (2016).
    [Crossref]

2018 (1)

S. M. A. Mirzaee, O. Lebel, and J. M. Nunzi, “Simple unbiased hot-electron polarization-sensitive near-infrared photodetector,” ACS Appl. Mater. Interface 10, 11862–11871 (2018).
[Crossref]

2016 (2)

T. Adhikari, Z. G. Rahami, J. M. Nunzi, and O. Lebel, “Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives,” Org. Electron. 34, 146–156 (2016).
[Crossref]

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

2015 (2)

Y. Tong, X. Zhao, M. C. Tan, and R. Zhao, “Cost-effective and highly photoresponsive nanophosphor- P3HT photoconductive nanocomposite for near-infrared detection,” Sci. Rep. 5, 16761 (2015).
[Crossref]

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

2014 (5)

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

M. Akbi, “A method for measuring the photoelectric work function of contact materials versus temperature,” IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1293–1302 (2014).
[Crossref]

J. Zhang, L. Shi, Y. Wang, E. Cassan, and X. Zhang, “On-chip high-speed optical detection based on an optical rectification scheme in silicon plasmonic platform,” Opt. Express 22, 27504–27514 (2014).
[Crossref]

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quantum Electron. 20, 6 (2014).

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

2013 (1)

S. M. A. Mirzaee, B. S. Rao, and J. M. Nunzi, “Three photon absorption detection using polymer photo- diodes,” Proc. SPIE 8915, 891514 (2013).
[Crossref]

2012 (3)

B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, and E. Buncel, “Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review,” Polym. Int. 61, 342–354 (2012).
[Crossref]

F. Liu and J. M. Nunzi, “Enhanced organic light emitting diode and solar cell performances using silver nano-clusters,” Org. Elec. 13, 1623–1632 (2012).
[Crossref]

R. A. Street, A. Krakaris, and S. R. Cowan, “Recombination through different types of localized states in organic solar cells,” Adv. Funct. Mater. 22, 4608–4619 (2012).
[Crossref]

2011 (4)

S. V. Novikov, A. R. Tameev, A. V. Vannikov, and J. M. Nunzi, “Estimation of the concentration of deep traps in organic photoconductors using two-photon absorption,” Proc. SPIE 7993, 799321 (2011).
[Crossref]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11, 5426–5430 (2011).
[Crossref]

G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36, 2572 (2011).
[Crossref]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

2010 (7)

N. Olivier, F. Aptel, K. Plamann, M. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18, 5028 (2010).
[Crossref]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express 18, 4939–4947 (2010).
[Crossref]

J. M. Nunzi, “Requirements for a rectifying antenna solar cell technology,” Proc. SPIE 7712, 771204 (2010).
[Crossref]

Y. Uchiho, M. Shimojo, and K. Kajikawa, “Electro-optic effect and optical rectification in gold nanoparticles immobilized above a gold surface,” J. Phys. D 43, 495101 (2010).
[Crossref]

F. Nastos and J. E. Sipe, “Optical rectification and current injection in unbiased semiconductors,” Phys. Rev. B 82, 235204 (2010).
[Crossref]

T. Baehr-Jones, J. Witzens, and M. Hochberg, “Theoretical study of optical rectification at radio frequencies in a slot waveguide,” IEEE J. Quantum Electron. 46, 1634–1641 (2010).
[Crossref]

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81, 155315 (2010).
[Crossref]

2009 (4)

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” App. Phys. Lett. 95, 021107 (2009).
[Crossref]

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
[Crossref]

H. Wei and H. Eilers, “From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates,” J. Phys. Chem. Solids 70, 459–465 (2009).
[Crossref]

2008 (1)

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THZ emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[Crossref]

2007 (1)

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon. Technol. Lett. 19, 2012–2014 (2007).
[Crossref]

2006 (1)

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, “Quick-response film photodetector of high-power laser radiation based on the optical rectification effect,” Tech. Phys. 51, 1190–1196 (2006).
[Crossref]

2005 (1)

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett. 87, 091118 (2005).
[Crossref]

2004 (3)

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” App. Phys. Lett. 84, 4854–4856 (2004).
[Crossref]

D. Y. Goswami, S. Vijayaraghavan, S. Lu, and G. Tamm, “New and emerging developments in solar energy,” Solar Energy 76, 33–43 (2004).
[Crossref]

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3634 (2004).
[Crossref]

2002 (2)

R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic-generation microscopy,” Phys. Rev. E 66, 067602 (2002).
[Crossref]

R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[Crossref]

1998 (3)

A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23, 867 (1998).
[Crossref]

C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. M. Nunzi, “Study of orientation induced molecular rectification in polymer films,” Opt. Mat. 9, 316–322 (1998).
[Crossref]

M. Akbi and A. Lefort, “Work function measurements of contact materials for industrial use,” J. Phys. D 31, 1301–1308 (1998).
[Crossref]

1989 (1)

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett. 63, 976–979 (1989).
[Crossref]

1986 (1)

D. Burgess, P. C. Stair and E. Weitz, “Calculations of the surface temperature rise and desorption temperature in laser-induced thermal desorption,” J. Vac. Sci. Technol. A 4, 1362–1366 (1986).
[Crossref]

D. Burgess, P. C. Stair and E. Weitz, “Calculations of the surface temperature rise and desorption temperature in laser-induced thermal desorption,” J. Vac. Sci. Technol. A 4, 1362–1366 (1986).
[Crossref]

1982 (1)

R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, “Fractal (scaling) clusters in thin gold films near the percolation threshold,” Phys. Rev. Lett. 49, 1441–1444 (1982).
[Crossref]

1980 (2)

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980).
[Crossref]

B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
[Crossref]

1966 (1)

W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, “The work function of gold,” Surf. Sci. 5, 221–229 (1966).
[Crossref]

1962 (1)

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical Rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[Crossref]

1957 (1)

J. C. Riviere, “Contact potential difference measurements by the Kelvin method,” Proc. Phys. Soc. London Sect. B 70, 676–686 (1957).
[Crossref]

Abb, M.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Adhikari, T.

T. Adhikari, Z. G. Rahami, J. M. Nunzi, and O. Lebel, “Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives,” Org. Electron. 34, 146–156 (2016).
[Crossref]

Adomavicius, R.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THZ emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[Crossref]

Ahorinta, R.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
[Crossref]

Aivazyan, Y. M.

B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
[Crossref]

Aizpurua, J.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Akbi, M.

M. Akbi, “A method for measuring the photoelectric work function of contact materials versus temperature,” IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1293–1302 (2014).
[Crossref]

M. Akbi and A. Lefort, “Work function measurements of contact materials for industrial use,” J. Phys. D 31, 1301–1308 (1998).
[Crossref]

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Albers, W. M.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
[Crossref]

Aldissi, M.

B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, and E. Buncel, “Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review,” Polym. Int. 61, 342–354 (2012).
[Crossref]

Alford, N.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Allessandrini, E. I.

R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, “Fractal (scaling) clusters in thin gold films near the percolation threshold,” Phys. Rev. Lett. 49, 1441–1444 (1982).
[Crossref]

Aptel, F.

Aspnes, D. E.

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett. 63, 976–979 (1989).
[Crossref]

Asselberghs, I.

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

Baehr-Jones, T.

T. Baehr-Jones, J. Witzens, and M. Hochberg, “Theoretical study of optical rectification at radio frequencies in a slot waveguide,” IEEE J. Quantum Electron. 46, 1634–1641 (2010).
[Crossref]

Barille, R.

R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic-generation microscopy,” Phys. Rev. E 66, 067602 (2002).
[Crossref]

Bartels, A.

Bass, M.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical Rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[Crossref]

Bastian, G.

Batlogg, B.

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81, 155315 (2010).
[Crossref]

Baughman, R. H.

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

Beaurepaire, E.

Beck, M.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Breeze, J.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Brevet, P.-F.

P.-F. Brevet, Surface Second Harmonic Generation (PPUR presses polytechniques, 1997), p. 47.

Bull, J. D.

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon. Technol. Lett. 19, 2012–2014 (2007).
[Crossref]

Buncel, E.

B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, and E. Buncel, “Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review,” Polym. Int. 61, 342–354 (2012).
[Crossref]

Burgess, D.

D. Burgess, P. C. Stair and E. Weitz, “Calculations of the surface temperature rise and desorption temperature in laser-induced thermal desorption,” J. Vac. Sci. Technol. A 4, 1362–1366 (1986).
[Crossref]

Canioni, L.

R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic-generation microscopy,” Phys. Rev. E 66, 067602 (2002).
[Crossref]

Cassan, E.

Centeno, A.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Chen, M.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Chen, Y.

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

Corkish, R.

R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[Crossref]

Cornelis, D.

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

Cowan, S. R.

R. A. Street, A. Krakaris, and S. R. Cowan, “Recombination through different types of localized states in organic solar cells,” Adv. Funct. Mater. 22, 4608–4619 (2012).
[Crossref]

Darcie, T. E.

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon. Technol. Lett. 19, 2012–2014 (2007).
[Crossref]

Deckers, S.

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

Dekorsy, T.

Donchev, E.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Dorgelo, G. J. H.

W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, “The work function of gold,” Surf. Sci. 5, 221–229 (1966).
[Crossref]

Eilers, H.

H. Wei and H. Eilers, “From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates,” J. Phys. Chem. Solids 70, 459–465 (2009).
[Crossref]

Faist, J.

Fang, S.

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

Fiorini, C.

C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. M. Nunzi, “Study of orientation induced molecular rectification in polymer films,” Opt. Mat. 9, 316–322 (1998).
[Crossref]

Fischer, M.

Franken, P. A.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical Rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[Crossref]

Fukui, M.

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980).
[Crossref]

Gammon, P.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Garnov, S. V.

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

Gebs, R.

Goswami, D. Y.

D. Y. Goswami, S. Vijayaraghavan, S. Lu, and G. Tamm, “New and emerging developments in solar energy,” Solar Energy 76, 33–43 (2004).
[Crossref]

Green, M. A.

R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[Crossref]

Gu, J.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Haas, S.

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81, 155315 (2010).
[Crossref]

Hashimoto, K.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” App. Phys. Lett. 95, 021107 (2009).
[Crossref]

Heinz, T. F.

Heritage, J. P.

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett. 63, 976–979 (1989).
[Crossref]

Hilser, F.

Hochberg, M.

T. Baehr-Jones, J. Witzens, and M. Hochberg, “Theoretical study of optical rectification at radio frequencies in a slot waveguide,” IEEE J. Quantum Electron. 46, 1634–1641 (2010).
[Crossref]

Holscher, A. A.

W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, “The work function of gold,” Surf. Sci. 5, 221–229 (1966).
[Crossref]

Huska, K.

Ishihara, T.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett. 87, 091118 (2005).
[Crossref]

Jiang, H.

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

Johnston, M. B.

Joshi, S.

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quantum Electron. 20, 6 (2014).

Kajikawa, K.

Y. Uchiho, M. Shimojo, and K. Kajikawa, “Electro-optic effect and optical rectification in gold nanoparticles immobilized above a gold surface,” J. Phys. D 43, 495101 (2010).
[Crossref]

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” App. Phys. Lett. 95, 021107 (2009).
[Crossref]

Kalb, W. L.

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81, 155315 (2010).
[Crossref]

Kauranen, M.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
[Crossref]

Klatt, G.

Koeckelberghs, G.

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

Kraft, T. M.

B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, and E. Buncel, “Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review,” Polym. Int. 61, 342–354 (2012).
[Crossref]

Krakaris, A.

R. A. Street, A. Krakaris, and S. R. Cowan, “Recombination through different types of localized states in organic solar cells,” Adv. Funct. Mater. 22, 4608–4619 (2012).
[Crossref]

Krause, D.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3634 (2004).
[Crossref]

Krellner, C.

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81, 155315 (2010).
[Crossref]

Krotkus, A.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THZ emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[Crossref]

Laibowitz, R. B.

R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, “Fractal (scaling) clusters in thin gold films near the percolation threshold,” Phys. Rev. Lett. 49, 1441–1444 (1982).
[Crossref]

Lebel, O.

S. M. A. Mirzaee, O. Lebel, and J. M. Nunzi, “Simple unbiased hot-electron polarization-sensitive near-infrared photodetector,” ACS Appl. Mater. Interface 10, 11862–11871 (2018).
[Crossref]

T. Adhikari, Z. G. Rahami, J. M. Nunzi, and O. Lebel, “Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives,” Org. Electron. 34, 146–156 (2016).
[Crossref]

Lefort, A.

M. Akbi and A. Lefort, “Work function measurements of contact materials for industrial use,” J. Phys. D 31, 1301–1308 (1998).
[Crossref]

Lemmer, U.

Li, D.

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

Li, Z.

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

Liu, F.

F. Liu and J. M. Nunzi, “Enhanced organic light emitting diode and solar cell performances using silver nano-clusters,” Org. Elec. 13, 1623–1632 (2012).
[Crossref]

Liu, Q.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Liu, X.

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

Lorin, A.

C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. M. Nunzi, “Study of orientation induced molecular rectification in polymer films,” Opt. Mat. 9, 316–322 (1998).
[Crossref]

Lu, S.

D. Y. Goswami, S. Vijayaraghavan, S. Lu, and G. Tamm, “New and emerging developments in solar energy,” Solar Energy 76, 33–43 (2004).
[Crossref]

Lyashenko, D. A.

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

Malevich, V. L.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THZ emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[Crossref]

Mathis, T.

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81, 155315 (2010).
[Crossref]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11, 5426–5430 (2011).
[Crossref]

Mikheev, G. M.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, “Quick-response film photodetector of high-power laser radiation based on the optical rectification effect,” Tech. Phys. 51, 1190–1196 (2006).
[Crossref]

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” App. Phys. Lett. 84, 4854–4856 (2004).
[Crossref]

Mirzaee, S. M. A.

S. M. A. Mirzaee, O. Lebel, and J. M. Nunzi, “Simple unbiased hot-electron polarization-sensitive near-infrared photodetector,” ACS Appl. Mater. Interface 10, 11862–11871 (2018).
[Crossref]

S. M. A. Mirzaee, B. S. Rao, and J. M. Nunzi, “Three photon absorption detection using polymer photo- diodes,” Proc. SPIE 8915, 891514 (2013).
[Crossref]

Moddel, G.

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quantum Electron. 20, 6 (2014).

Monnaie, F.

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

Morozov, B. N.

B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
[Crossref]

Muskens, O. L.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Nahata, A.

Nastos, F.

F. Nastos and J. E. Sipe, “Optical rectification and current injection in unbiased semiconductors,” Phys. Rev. B 82, 235204 (2010).
[Crossref]

Novikov, S. V.

S. V. Novikov, A. R. Tameev, A. V. Vannikov, and J. M. Nunzi, “Estimation of the concentration of deep traps in organic photoconductors using two-photon absorption,” Proc. SPIE 7993, 799321 (2011).
[Crossref]

Nunzi, J. M.

S. M. A. Mirzaee, O. Lebel, and J. M. Nunzi, “Simple unbiased hot-electron polarization-sensitive near-infrared photodetector,” ACS Appl. Mater. Interface 10, 11862–11871 (2018).
[Crossref]

T. Adhikari, Z. G. Rahami, J. M. Nunzi, and O. Lebel, “Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives,” Org. Electron. 34, 146–156 (2016).
[Crossref]

S. M. A. Mirzaee, B. S. Rao, and J. M. Nunzi, “Three photon absorption detection using polymer photo- diodes,” Proc. SPIE 8915, 891514 (2013).
[Crossref]

F. Liu and J. M. Nunzi, “Enhanced organic light emitting diode and solar cell performances using silver nano-clusters,” Org. Elec. 13, 1623–1632 (2012).
[Crossref]

B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, and E. Buncel, “Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review,” Polym. Int. 61, 342–354 (2012).
[Crossref]

S. V. Novikov, A. R. Tameev, A. V. Vannikov, and J. M. Nunzi, “Estimation of the concentration of deep traps in organic photoconductors using two-photon absorption,” Proc. SPIE 7993, 799321 (2011).
[Crossref]

J. M. Nunzi, “Requirements for a rectifying antenna solar cell technology,” Proc. SPIE 7712, 771204 (2010).
[Crossref]

C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. M. Nunzi, “Study of orientation induced molecular rectification in polymer films,” Opt. Mat. 9, 316–322 (1998).
[Crossref]

Obraztsov, A. N.

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, “Quick-response film photodetector of high-power laser radiation based on the optical rectification effect,” Tech. Phys. 51, 1190–1196 (2006).
[Crossref]

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” App. Phys. Lett. 84, 4854–4856 (2004).
[Crossref]

Obraztsov, P. A.

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

Okawa, H.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” App. Phys. Lett. 95, 021107 (2009).
[Crossref]

Olivier, N.

Pang, J.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Petrov, P.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Plamann, K.

Planken, P. C. M.

Puzzer, T.

R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[Crossref]

Qiao, W.

Rahami, Z. G.

T. Adhikari, Z. G. Rahami, J. M. Nunzi, and O. Lebel, “Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives,” Org. Electron. 34, 146–156 (2016).
[Crossref]

Ramakrishnan, G.

Rao, B. S.

S. M. A. Mirzaee, B. S. Rao, and J. M. Nunzi, “Three photon absorption detection using polymer photo- diodes,” Proc. SPIE 8915, 891514 (2013).
[Crossref]

Ratier, B.

B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, and E. Buncel, “Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review,” Polym. Int. 61, 342–354 (2012).
[Crossref]

Riley, D.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Riviere, J. C.

J. C. Riviere, “Contact potential difference measurements by the Kelvin method,” Proc. Phys. Soc. London Sect. B 70, 676–686 (1957).
[Crossref]

Rivoire, G.

R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic-generation microscopy,” Phys. Rev. E 66, 067602 (2002).
[Crossref]

Rodriguez, F. J.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
[Crossref]

Rogers, C. T.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3634 (2004).
[Crossref]

Ryan, M.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Sachtler, W. M. H.

W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, “The work function of gold,” Surf. Sci. 5, 221–229 (1966).
[Crossref]

Sarger, L.

R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic-generation microscopy,” Phys. Rev. E 66, 067602 (2002).
[Crossref]

Schanne-Klein, M.

Sentein, C.

C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. M. Nunzi, “Study of orientation induced molecular rectification in polymer films,” Opt. Mat. 9, 316–322 (1998).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, 1999).

Shi, L.

Shimojo, M.

Y. Uchiho, M. Shimojo, and K. Kajikawa, “Electro-optic effect and optical rectification in gold nanoparticles immobilized above a gold surface,” J. Phys. D 43, 495101 (2010).
[Crossref]

Sicot, L.

C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. M. Nunzi, “Study of orientation induced molecular rectification in polymer films,” Opt. Mat. 9, 316–322 (1998).
[Crossref]

Sipe, J. E.

F. Nastos and J. E. Sipe, “Optical rectification and current injection in unbiased semiconductors,” Phys. Rev. B 82, 235204 (2010).
[Crossref]

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
[Crossref]

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980).
[Crossref]

So, V. C. Y.

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980).
[Crossref]

Song, H.

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

Stair, P. C.

D. Burgess, P. C. Stair and E. Weitz, “Calculations of the surface temperature rise and desorption temperature in laser-induced thermal desorption,” J. Vac. Sci. Technol. A 4, 1362–1366 (1986).
[Crossref]

Stegeman, G. I.

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980).
[Crossref]

Street, R. A.

R. A. Street, A. Krakaris, and S. R. Cowan, “Recombination through different types of localized states in organic solar cells,” Adv. Funct. Mater. 22, 4608–4619 (2012).
[Crossref]

Su, H.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Su, Y.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Sun, C.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Sun, X.

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

Svirko, Y. P.

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

Svirko, Yu. P.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, “Quick-response film photodetector of high-power laser radiation based on the optical rectification effect,” Tech. Phys. 51, 1190–1196 (2006).
[Crossref]

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” App. Phys. Lett. 84, 4854–4856 (2004).
[Crossref]

Tameev, A. R.

S. V. Novikov, A. R. Tameev, A. V. Vannikov, and J. M. Nunzi, “Estimation of the concentration of deep traps in organic photoconductors using two-photon absorption,” Proc. SPIE 7993, 799321 (2011).
[Crossref]

Tamm, G.

D. Y. Goswami, S. Vijayaraghavan, S. Lu, and G. Tamm, “New and emerging developments in solar energy,” Solar Energy 76, 33–43 (2004).
[Crossref]

Tan, M. C.

Y. Tong, X. Zhao, M. C. Tan, and R. Zhao, “Cost-effective and highly photoresponsive nanophosphor- P3HT photoconductive nanocomposite for near-infrared detection,” Sci. Rep. 5, 16761 (2015).
[Crossref]

Tanaka, D.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” App. Phys. Lett. 95, 021107 (2009).
[Crossref]

Teplin, C. W.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3634 (2004).
[Crossref]

Tong, Y.

Y. Tong, X. Zhao, M. C. Tan, and R. Zhao, “Cost-effective and highly photoresponsive nanophosphor- P3HT photoconductive nanocomposite for near-infrared detection,” Sci. Rep. 5, 16761 (2015).
[Crossref]

Uchiho, Y.

Y. Uchiho, M. Shimojo, and K. Kajikawa, “Electro-optic effect and optical rectification in gold nanoparticles immobilized above a gold surface,” J. Phys. D 43, 495101 (2010).
[Crossref]

Uzawa, R.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” App. Phys. Lett. 95, 021107 (2009).
[Crossref]

van der Veen, M. A.

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

Vandendriessche, S.

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

Vannikov, A. V.

S. V. Novikov, A. R. Tameev, A. V. Vannikov, and J. M. Nunzi, “Estimation of the concentration of deep traps in organic photoconductors using two-photon absorption,” Proc. SPIE 7993, 799321 (2011).
[Crossref]

Vengurlekar, A. S.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett. 87, 091118 (2005).
[Crossref]

Verbiest, T.

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

Vicsek, T.

T. Vicsek, Fractal Growth Phenomena (World Science, 1992).

Vijayaraghavan, S.

D. Y. Goswami, S. Vijayaraghavan, S. Lu, and G. Tamm, “New and emerging developments in solar energy,” Solar Energy 76, 33–43 (2004).
[Crossref]

Volkov, A. P.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, “Quick-response film photodetector of high-power laser radiation based on the optical rectification effect,” Tech. Phys. 51, 1190–1196 (2006).
[Crossref]

Voss, R. F.

R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, “Fractal (scaling) clusters in thin gold films near the percolation threshold,” Phys. Rev. Lett. 49, 1441–1444 (1982).
[Crossref]

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11, 5426–5430 (2011).
[Crossref]

Wang, F. X.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
[Crossref]

Wang, Y.

Ward, J. F.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical Rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[Crossref]

Wei, H.

H. Wei and H. Eilers, “From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates,” J. Phys. Chem. Solids 70, 459–465 (2009).
[Crossref]

Weinreich, G.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical Rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[Crossref]

Weitz, E.

D. Burgess, P. C. Stair and E. Weitz, “Calculations of the surface temperature rise and desorption temperature in laser-induced thermal desorption,” J. Vac. Sci. Technol. A 4, 1362–1366 (1986).
[Crossref]

Witzens, J.

T. Baehr-Jones, J. Witzens, and M. Hochberg, “Theoretical study of optical rectification at radio frequencies in a slot waveguide,” IEEE J. Quantum Electron. 46, 1634–1641 (2010).
[Crossref]

Xie, F.

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett. 63, 976–979 (1989).
[Crossref]

Yafet, Y.

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett. 63, 976–979 (1989).
[Crossref]

You, X.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Zhang, D.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Zhang, J.

J. Zhang, L. Shi, Y. Wang, E. Cassan, and X. Zhang, “On-chip high-speed optical detection based on an optical rectification scheme in silicon plasmonic platform,” Opt. Express 22, 27504–27514 (2014).
[Crossref]

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon. Technol. Lett. 19, 2012–2014 (2007).
[Crossref]

Zhang, R.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Zhang, W.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Zhang, X.

Zhao, R.

Y. Tong, X. Zhao, M. C. Tan, and R. Zhao, “Cost-effective and highly photoresponsive nanophosphor- P3HT photoconductive nanocomposite for near-infrared detection,” Sci. Rep. 5, 16761 (2015).
[Crossref]

Zhao, X.

Y. Tong, X. Zhao, M. C. Tan, and R. Zhao, “Cost-effective and highly photoresponsive nanophosphor- P3HT photoconductive nanocomposite for near-infrared detection,” Sci. Rep. 5, 16761 (2015).
[Crossref]

Zhao, Y.

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Zhu, Z.

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quantum Electron. 20, 6 (2014).

Zonov, R. G.

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, “Quick-response film photodetector of high-power laser radiation based on the optical rectification effect,” Tech. Phys. 51, 1190–1196 (2006).
[Crossref]

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” App. Phys. Lett. 84, 4854–4856 (2004).
[Crossref]

ACS Appl. Mater. Interface (1)

S. M. A. Mirzaee, O. Lebel, and J. M. Nunzi, “Simple unbiased hot-electron polarization-sensitive near-infrared photodetector,” ACS Appl. Mater. Interface 10, 11862–11871 (2018).
[Crossref]

ACS Nano (1)

M. Chen, J. Gu, C. Sun, Y. Zhao, R. Zhang, X. You, Q. Liu, W. Zhang, Y. Su, H. Su, and D. Zhang, “Light-driven overall water splitting enabled by a photo-Dember effect realized on 3D plasmonic structures,” ACS Nano 10, 6693–6701 (2016).
[Crossref]

Adv. Funct. Mater. (1)

R. A. Street, A. Krakaris, and S. R. Cowan, “Recombination through different types of localized states in organic solar cells,” Adv. Funct. Mater. 22, 4608–4619 (2012).
[Crossref]

App. Phys. Lett. (2)

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett. 87, 091118 (2005).
[Crossref]

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” App. Phys. Lett. 95, 021107 (2009).
[Crossref]

App. Phys. Lett. (1)

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, “Giant optical rectification effect in nanocarbon films,” App. Phys. Lett. 84, 4854–4856 (2004).
[Crossref]

Appl. Phys. Lett. (1)

A. N. Obraztsov, D. A. Lyashenko, S. Fang, R. H. Baughman, P. A. Obraztsov, S. V. Garnov, and Y. P. Svirko, “Photon drag effect in carbon nanotube yarns,” Appl. Phys. Lett. 94, 231112 (2009).
[Crossref]

C. R. Physique (1)

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THZ emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[Crossref]

Chem. Commun. (1)

S. Deckers, S. Vandendriessche, D. Cornelis, F. Monnaie, G. Koeckelberghs, I. Asselberghs, T. Verbiest, and M. A. van der Veen, “Poly(3-alkylthiophene)s show unexpected second-order nonlinear optical response,” Chem. Commun. 50, 2741–2743 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Baehr-Jones, J. Witzens, and M. Hochberg, “Theoretical study of optical rectification at radio frequencies in a slot waveguide,” IEEE J. Quantum Electron. 46, 1634–1641 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Zhu, S. Joshi, and G. Moddel, “High performance room temperature rectenna IR detectors using graphene geometric diodes,” IEEE J. Sel. Top. Quantum Electron. 20, 6 (2014).

IEEE Photon. Technol. Lett. (1)

J. Zhang, J. D. Bull, and T. E. Darcie, “Microwave photonic signal detection using phase-matched optical rectification in an AlGaAs waveguide,” IEEE Photon. Technol. Lett. 19, 2012–2014 (2007).
[Crossref]

IEEE Trans. Compon. Packag. Manuf. Technol. (1)

M. Akbi, “A method for measuring the photoelectric work function of contact materials versus temperature,” IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1293–1302 (2014).
[Crossref]

J. Appl. Phys. (1)

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3634 (2004).
[Crossref]

J. Phys. Chem. Solids (1)

H. Wei and H. Eilers, “From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates,” J. Phys. Chem. Solids 70, 459–465 (2009).
[Crossref]

J. Phys. D (2)

M. Akbi and A. Lefort, “Work function measurements of contact materials for industrial use,” J. Phys. D 31, 1301–1308 (1998).
[Crossref]

Y. Uchiho, M. Shimojo, and K. Kajikawa, “Electro-optic effect and optical rectification in gold nanoparticles immobilized above a gold surface,” J. Phys. D 43, 495101 (2010).
[Crossref]

J. Vac. Sci. Technol. A (1)

D. Burgess, P. C. Stair and E. Weitz, “Calculations of the surface temperature rise and desorption temperature in laser-induced thermal desorption,” J. Vac. Sci. Technol. A 4, 1362–1366 (1986).
[Crossref]

MRS Energy Sustainability (1)

E. Donchev, J. Pang, P. Gammon, A. Centeno, F. Xie, P. Petrov, J. Breeze, M. Ryan, D. Riley, and N. Alford, “The rectenna device: from theory to practice,” MRS Energy Sustainability 1, 1–34 (2014).
[Crossref]

Nano Lett. (2)

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11, 5426–5430 (2011).
[Crossref]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mat. (1)

C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J. M. Nunzi, “Study of orientation induced molecular rectification in polymer films,” Opt. Mat. 9, 316–322 (1998).
[Crossref]

Org. Elec. (1)

F. Liu and J. M. Nunzi, “Enhanced organic light emitting diode and solar cell performances using silver nano-clusters,” Org. Elec. 13, 1623–1632 (2012).
[Crossref]

Org. Electron. (1)

T. Adhikari, Z. G. Rahami, J. M. Nunzi, and O. Lebel, “Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives,” Org. Electron. 34, 146–156 (2016).
[Crossref]

Phys. Rev. B (4)

J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980).
[Crossref]

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009).
[Crossref]

W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81, 155315 (2010).
[Crossref]

F. Nastos and J. E. Sipe, “Optical rectification and current injection in unbiased semiconductors,” Phys. Rev. B 82, 235204 (2010).
[Crossref]

Phys. Rev. E (1)

R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic-generation microscopy,” Phys. Rev. E 66, 067602 (2002).
[Crossref]

Phys. Rev. Lett. (3)

E. Yablonovitch, J. P. Heritage, D. E. Aspnes, and Y. Yafet, “Virtual photoconductivity,” Phys. Rev. Lett. 63, 976–979 (1989).
[Crossref]

R. F. Voss, R. B. Laibowitz, and E. I. Allessandrini, “Fractal (scaling) clusters in thin gold films near the percolation threshold,” Phys. Rev. Lett. 49, 1441–1444 (1982).
[Crossref]

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical Rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[Crossref]

Polym. Int. (1)

B. Ratier, J. M. Nunzi, M. Aldissi, T. M. Kraft, and E. Buncel, “Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review,” Polym. Int. 61, 342–354 (2012).
[Crossref]

Proc. Phys. Soc. London Sect. B (1)

J. C. Riviere, “Contact potential difference measurements by the Kelvin method,” Proc. Phys. Soc. London Sect. B 70, 676–686 (1957).
[Crossref]

Proc. SPIE (3)

S. M. A. Mirzaee, B. S. Rao, and J. M. Nunzi, “Three photon absorption detection using polymer photo- diodes,” Proc. SPIE 8915, 891514 (2013).
[Crossref]

J. M. Nunzi, “Requirements for a rectifying antenna solar cell technology,” Proc. SPIE 7712, 771204 (2010).
[Crossref]

S. V. Novikov, A. R. Tameev, A. V. Vannikov, and J. M. Nunzi, “Estimation of the concentration of deep traps in organic photoconductors using two-photon absorption,” Proc. SPIE 7993, 799321 (2011).
[Crossref]

Sci. Rep. (2)

Y. Tong, X. Zhao, M. C. Tan, and R. Zhao, “Cost-effective and highly photoresponsive nanophosphor- P3HT photoconductive nanocomposite for near-infrared detection,” Sci. Rep. 5, 16761 (2015).
[Crossref]

X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, “Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers,” Sci. Rep. 5, 12555 (2015).
[Crossref]

Sol. Energy (1)

R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[Crossref]

Solar Energy (1)

D. Y. Goswami, S. Vijayaraghavan, S. Lu, and G. Tamm, “New and emerging developments in solar energy,” Solar Energy 76, 33–43 (2004).
[Crossref]

Sov. J. Quantum Electron. (1)

B. N. Morozov and Y. M. Aivazyan, “Optical rectification effect and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980).
[Crossref]

Surf. Sci. (1)

W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, “The work function of gold,” Surf. Sci. 5, 221–229 (1966).
[Crossref]

Tech. Phys. (1)

G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, and Yu. P. Svirko, “Quick-response film photodetector of high-power laser radiation based on the optical rectification effect,” Tech. Phys. 51, 1190–1196 (2006).
[Crossref]

Other (4)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

T. Vicsek, Fractal Growth Phenomena (World Science, 1992).

P.-F. Brevet, Surface Second Harmonic Generation (PPUR presses polytechniques, 1997), p. 47.

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Capacitor configuration to detect OR in the nonlinear material.
Fig. 2.
Fig. 2. Measurement setup.
Fig. 3.
Fig. 3. (a) 3PA photovoltage for three different samples under study. (b) TPA photovoltage for two different samples under study. (c) Polarization dependence of the TPA photovoltage. The points show the experimental data and the solid lines correspond to the 3PA (a), TPA (b), linear and 2 + cos 2 ( 2 α ) models in half-wave-plate (HWP) data, and quarter-wave plate (QWP) data, respectively (c).
Fig. 4.
Fig. 4. 14-nm-thick gold film deposited on top of ITO substrate. (a) Optical absorption spectrum. (b) Capacitor configuration incorporating the gold sample. The inset shows a scanning electron microscopy (SEM) image of an Au thin film.
Fig. 5.
Fig. 5. Photovoltage measurement showing dependency on the illuminated laser power, with the linear fit denoted as a black line.
Fig. 6.
Fig. 6. Polarization dependence of the nonlinear signals generated through a 14 nm gold nanostructured thin film on top of an ITO substrate. (a) SHG intensity, (b) THG intensity, (c) OR photovoltage and schematic representation of the measurement configuration.

Tables (1)

Tables Icon

Table 1. ITO [31] and Gold [3235] Thermal Coefficients

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P i = ϵ 0 ( χ i j ( 1 ) E j + χ i j k ( 2 ) E j E k + χ i j k l ( 3 ) E j E k E l + χ i j k l m n ( 5 ) E j E k E l E m E n + ) ,
Δ T ( t ) = 2 ( F 0 K ) ( k π ) 1 2 ( t < t 0 ) , = 2 ( F 0 K ) ( k π ) 1 2 [ t 1 2 ( t t 0 ) 1 2 ] ( t > t 0 ) ,
F 0 = ( P in P out ) / A , P out P i n = exp ( α X ) ,
P i ( 0 ) = χ i j k z ( 3 ) ( 0 ; ω , ω , DC ) E j ( ω ) E k ( ω ) E z DC ,

Metrics