Abstract

In this paper we investigate supercontinuum generation in several suspended-core soft-glass photonic crystal fibers pumped by an optical parametric oscillator tunable around 1550 nm. The fibers were drawn from lead-bismuth-gallium-cadmium-oxide glass (PBG-81) featuring a wide transmission window from 0.5 to 2.7 μm and a high nonlinear refractive index up to 4.3·1019  m2/W. They have been specifically designed with a microscale suspended hexagonal core for efficient supercontinuum generation around 1550 nm. We experimentally demonstrate two supercontinuum spectra spanning from 1.07 to 2.31 μm and 0.89 to 2.46 μm by pumping two PCFs in both normal and anomalous dispersion regimes, respectively. We also numerically model the group velocity dispersion curves for these fibers from their scanning electron microscope images. The results are in good agreement with numerical simulations based on the generalized nonlinear Schrödinger equation including the pump frequency chirp.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

A. N. Ghosh, M. Klimczak, R. Buczynski, J. M. Dudley, and T. Sylvestre, "Supercontinuum generation in heavy-metal oxide glass based suspended-core photonic crystal fibers: erratum," J. Opt. Soc. Am. B 35, 2815-2815 (2018)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-35-11-2815

OSA Recommended Articles
Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm

Grzegorz Sobon, Mariusz Klimczak, Jaroslaw Sotor, Karol Krzempek, Dariusz Pysz, Ryszard Stepien, Tadeusz Martynkien, Krzysztof M. Abramski, and Ryszard Buczynski
Opt. Mater. Express 4(1) 7-15 (2014)

Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala
Opt. Lett. 39(9) 2684-2687 (2014)

Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560 nm

Mariusz Klimczak, Grzegorz Stepniewski, Henry Bookey, Agnieszka Szolno, Ryszard Stepien, Dariusz Pysz, Ajoy Kar, Andrew Waddie, Mohammad R. Taghizadeh, and Ryszard Buczynski
Opt. Lett. 38(22) 4679-4682 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15, 11385–11395 (2007).
    [Crossref]
  2. Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express 18, 22762–22771 (2010).
    [Crossref]
  3. C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
    [Crossref]
  4. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  5. W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
    [Crossref]
  6. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. L. Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [Crossref]
  7. F. Désévédavy, G. Gadret, J.-C. Jules, B. Kibler, and F. Smektala, “Supercontinuum generation in tellurite optical fibers,” in Technological Advances in Tellurite Glasses, Springer Series in Material Science (Springer, 2017), Vol. 254, pp. 277–299.
  8. M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
    [Crossref]
  9. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
    [Crossref]
  10. M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7  μm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 3200207 (2017).
    [Crossref]
  11. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [Crossref]
  12. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4, 1163–1166 (2017).
    [Crossref]
  13. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11  μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43, 296–299 (2018).
    [Crossref]
  14. P. S. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  15. M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41, 5122–5125 (2016).
    [Crossref]
  16. D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24, 26667–26677 (2016).
    [Crossref]
  17. G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
    [Crossref]
  18. L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16, 16423–16430 (2008).
    [Crossref]
  19. M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
    [Crossref]
  20. P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
    [Crossref]
  21. M. E. Amraoui, J. Fatome, J.-C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
    [Crossref]
  22. D. Ghosh, S. Roy, and S. K. Bhadra, “Efficient supercontinuum sources based on suspended core microstructured fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 597–604 (2014).
    [Crossref]
  23. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [Crossref]
  24. A. Hartung, A. M. Heidt, and H. Bartelt, “Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths,” Opt. Express 20, 13777–13788 (2012).
    [Crossref]
  25. T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12, 1377–1382 (2004).
    [Crossref]
  26. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
    [Crossref]
  27. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  28. J. Dudley and J. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

2018 (1)

2017 (3)

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7  μm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 3200207 (2017).
[Crossref]

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4, 1163–1166 (2017).
[Crossref]

2016 (2)

2014 (5)

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
[Crossref]

P. S. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

D. Ghosh, S. Roy, and S. K. Bhadra, “Efficient supercontinuum sources based on suspended core microstructured fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 597–604 (2014).
[Crossref]

2013 (3)

2012 (2)

2010 (2)

2008 (4)

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16, 16423–16430 (2008).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref]

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

2007 (1)

2006 (2)

2004 (1)

Aalto, A.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Abramski, K. M.

Agger, C.

Akhmediev, N.

Akhouayri, H.

Alamgir, I.

Alvarez, O.

Amiot, C.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Amraoui, M. E.

Antipov, S.

Aranyosiova, M.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Bang, O.

Bartelt, H.

Bedford, R.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bhadra, S. K.

D. Ghosh, S. Roy, and S. K. Bhadra, “Efficient supercontinuum sources based on suspended core microstructured fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 597–604 (2014).
[Crossref]

Billard, F.

Bookey, H.

Brilland, L.

Buczynski, R.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Bugar, I.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Chang, W.

M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41, 5122–5125 (2016).
[Crossref]

P. S. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Chenard, F.

Cheng, T.

Choi, D.-Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Cordeiro, C. M. B.

Cronin-Golomb, M.

Davies, B. L.

Deng, D.

Désévédavy, F.

F. Désévédavy, G. Gadret, J.-C. Jules, B. Kibler, and F. Smektala, “Supercontinuum generation in tellurite optical fibers,” in Technological Advances in Tellurite Glasses, Springer Series in Material Science (Springer, 2017), Vol. 254, pp. 277–299.

Domachuk, P.

Dong, L.

Duan, Z.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

El Amraoui, M.

Engelbrecht, R.

Fatome, J.

Fortier, C.

Freeman, M. J.

Fu, L.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gadret, G.

M. E. Amraoui, J. Fatome, J.-C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

F. Désévédavy, G. Gadret, J.-C. Jules, B. Kibler, and F. Smektala, “Supercontinuum generation in tellurite optical fibers,” in Technological Advances in Tellurite Glasses, Springer Series in Material Science (Springer, 2017), Vol. 254, pp. 277–299.

Gai, X.

Gao, W.

Genty, G.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A. K.

Ghosh, D.

D. Ghosh, S. Roy, and S. K. Bhadra, “Efficient supercontinuum sources based on suspended core microstructured fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 597–604 (2014).
[Crossref]

Gibson, R.

Guo, K.

Hartung, A.

Hasan, M. I.

Heidt, A. M.

Hlubina, P.

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7  μm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 3200207 (2017).
[Crossref]

Ho, D.

Holzer, P.

P. S. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Hu, T.

Hudson, D. D.

Hult, J.

Ifarraguerri, A. I.

Islam, M. N.

Jackson, S. D.

Jain, D.

Janiszewski, B.

Jules, J.-C.

M. E. Amraoui, J. Fatome, J.-C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

F. Désévédavy, G. Gadret, J.-C. Jules, B. Kibler, and F. Smektala, “Supercontinuum generation in tellurite optical fibers,” in Technological Advances in Tellurite Glasses, Springer Series in Material Science (Springer, 2017), Vol. 254, pp. 277–299.

Kaminski, C. F.

Kar, A.

Kawashima, H.

Keiding, S. R.

Kibler, B.

M. E. Amraoui, J. Fatome, J.-C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

F. Désévédavy, G. Gadret, J.-C. Jules, B. Kibler, and F. Smektala, “Supercontinuum generation in tellurite optical fibers,” in Technological Advances in Tellurite Glasses, Springer Series in Material Science (Springer, 2017), Vol. 254, pp. 277–299.

Klimczak, M.

Klimek, J.

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

Knight, J. C.

Kozlov, D.

Krzempek, K.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Leipertz, A.

Li, L.

Liao, M.

Lorenc, D.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Lyngsø, J. K.

Ma, P.

Madden, S.

Makara, M.

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

Martinez, R. A.

Martynkien, T.

Maynard, R. L.

Mazé, G.

Mergo, P.

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

Messaddeq, Y.

Michalska, M.

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7  μm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 3200207 (2017).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moneim, N. A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moselund, P. M.

Nasilowski, T.

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

Ohishi, Y.

Olivier, T.

Omenetto, F. G.

Petersen, C.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Plant, G.

Pniewski, J.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

Polacchini, C. F.

Poturaj, K.

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

Poulain, M.

Pysz, D.

Radzewicz, C.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Renversez, G.

Rochette, M.

Roy, S.

D. Ghosh, S. Roy, and S. K. Bhadra, “Efficient supercontinuum sources based on suspended core microstructured fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 597–604 (2014).
[Crossref]

Russell, P. S. J.

P. S. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Ryczkowski, P.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Schmauss, B.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Seeger, T.

Sidharthan, R.

Siwicki, B.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

Skibinski, P.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

Skorupski, K.

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

Skripatchev, I.

Smektala, F.

M. E. Amraoui, J. Fatome, J.-C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

F. Désévédavy, G. Gadret, J.-C. Jules, B. Kibler, and F. Smektala, “Supercontinuum generation in tellurite optical fibers,” in Technological Advances in Tellurite Glasses, Springer Series in Material Science (Springer, 2017), Vol. 254, pp. 277–299.

Sobon, G.

Sotor, J.

Steffensen, H.

Stepien, R.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560  nm,” Opt. Mater. Express 4, 7–15 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Stepniewski, G.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

Swiderski, J.

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7  μm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 3200207 (2017).
[Crossref]

Sych, Y.

Szolno, A.

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560  nm,” Opt. Lett. 38, 4679–4682 (2013).
[Crossref]

Szpulak, M.

Taghizadeh, M. R.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Terry, F. L.

Thøgersen, J.

Thomas, B. K.

Thomsen, C. L.

Toivonen, J.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

Travers, J. C.

P. S. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

Troles, J.

Velic, D.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Vincze, A.

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Waddie, A.

Wang, A.

Wang, R.

Wang, T.

Watt, R. S.

Wojcik, J.

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

Wolchover, N. A.

Xia, C.

Yang, Z.

Yoo, S.

Yu, Y.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Appl. Phys. B (1)

D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B 93, 531–538 (2008).
[Crossref]

Appl. Phys. Lett. (1)

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111, 061103 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Ghosh, S. Roy, and S. K. Bhadra, “Efficient supercontinuum sources based on suspended core microstructured fibers,” IEEE J. Sel. Top. Quantum Electron. 20, 597–604 (2014).
[Crossref]

IEEE Photon. J. (1)

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7  μm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 3200207 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

P. S. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. A. Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Express (9)

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15, 11385–11395 (2007).
[Crossref]

Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express 18, 22762–22771 (2010).
[Crossref]

D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express 24, 26667–26677 (2016).
[Crossref]

L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16, 16423–16430 (2008).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths,” Opt. Express 20, 13777–13788 (2012).
[Crossref]

T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12, 1377–1382 (2004).
[Crossref]

M. E. Amraoui, J. Fatome, J.-C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, “Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber,” Opt. Quantum Electron. 46, 563–571 (2014).
[Crossref]

Optica (1)

Proc. SPIE (1)

P. Mergo, M. Makara, J. Wojcik, K. Poturaj, J. Klimek, K. Skorupski, and T. Nasilowski, “Supercontinuum generation in suspended core microstructured optical fibers,” Proc. SPIE 7120, 712009 (2008).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Other (2)

J. Dudley and J. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

F. Désévédavy, G. Gadret, J.-C. Jules, B. Kibler, and F. Smektala, “Supercontinuum generation in tellurite optical fibers,” in Technological Advances in Tellurite Glasses, Springer Series in Material Science (Springer, 2017), Vol. 254, pp. 277–299.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Attenuation spectrum of bulk lead-bismuth-gallium-cadmium-oxide glass used for drawing SCPCFs.
Fig. 2.
Fig. 2. Cross-section SEM images of a suspended core PCF. (a) Image of the fiber with an outer diameter of 99.5 μm. (b) Expanded view of the microstructure region (core diameter of 3.95 μm). (c) One of the six struts supporting the core with thickness of 89.7 nm.
Fig. 3.
Fig. 3. Dispersion characteristics of the SC-PCFs simulated for the fundamental mode from SEM images. (a) Group velocity dispersion of five SC-PCF samples (inset: optical power density of the fundamental mode inside the core of fiber sample NL44C2a). (b) Dispersion curve of the PCFs showing zero-dispersion wavelength (ZDW).
Fig. 4.
Fig. 4. Scheme of the experimental setup for generating and measuring supercontinuum infrared light. TSFL, Ti-sapphire femtosecond laser; FO, focusing objective; SC-PCF, suspended core photonic crystal fiber; MMF, multimode fiber (left inset: beam profile at OPO output; right inset: IR image at SC-PCF output).
Fig. 5.
Fig. 5. Supercontinuum spectra generated in two SC-PCF samples with 200 fs pulses pumped at 1550 nm and 1580 nm, respectively, as a function of mean output power. (a) and (c) Generation of SC spectra through spectral broadening, soliton ejection, and dispersive wave generation in two fiber samples, NL44C2a and NL44C5c, respectively. (b) and (d) Evolution of SC spectrum with the fiber output power for SC-PCF samples NL44C2a and NL44C5c.
Fig. 6.
Fig. 6. Spectra generated in SC-PCF sample NL44C4b with 200 fs pulses pumped at 1740 nm. (a) Generation of broad spectra through spectral broadening, soliton ejection, and dispersive wave generation. (b) Evolution of spectrum with the fiber output power.
Fig. 7.
Fig. 7. (a) and (c) Numerically generated evolution of SC spectra along the fiber length for NL44C2a and NL44C5c PCFs with 1550 nm and 1580 nm pumping, respectively. (b) and (d) Corresponding temporal distribution along the fiber length for NL44C2a and NL44C5c PCFs.
Fig. 8.
Fig. 8. Comparison between numerically and experimentally generated SC spectra for 1550 nm and 1580 nm pumping in (a) NL44C2a and (b) NL44C5c PCFs.

Tables (1)

Tables Icon

Table 1. Geometric Parameters of SC-PCFs Used for Dispersion Calculation and Supercontinuum Generation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A k 2 i k + 1 k ! β k k A T k = i γ ( 1 + i τ shock T ) × ( A ( z , T ) + R ( T ) | A ( z , T T | 2 d T ) ,

Metrics