Abstract

In the long-wavelength approximation, an effective conductivity tensor is introduced for graphene ribbons (strips) placed periodically at the interface between two media. The resulting conducting surface is considered as a coating for semiconductor nanowire. For the hybrid waves of such nanowire, the dispersion equations are obtained in explicit form. Two types of surface plasmons are found to exist: (i) modified surface plasmons, which originate from the ordinary surface plasmons of a graphene-coated semiconductor nanowire, and (ii) spoof plasmons, which arise on the array of graphene ribbons and may possess forward-wave and backward-wave dispersion. It is revealed that the spoof surface plasmons are low-loss ones, and their frequencies, field-confinement, and group velocities can be tuned widely by adjusting the coil angle and width of the helical graphene strips.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù
Opt. Mater. Express 5(10) 2313-2329 (2015)

High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate

Morteza Hajati and Yaser Hajati
J. Opt. Soc. Am. B 33(12) 2560-2565 (2016)

Analytical model for plasmon modes in graphene-coated nanowire

Yixiao Gao, Guobin Ren, Bofeng Zhu, Huaiqing Liu, Yudong Lian, and Shuisheng Jian
Opt. Express 22(20) 24322-24331 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription