Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-loss forward and backward surface plasmons in a semiconductor nanowire coated by helical graphene strips

Not Accessible

Your library or personal account may give you access

Abstract

In the long-wavelength approximation, an effective conductivity tensor is introduced for graphene ribbons (strips) placed periodically at the interface between two media. The resulting conducting surface is considered as a coating for semiconductor nanowire. For the hybrid waves of such nanowire, the dispersion equations are obtained in explicit form. Two types of surface plasmons are found to exist: (i) modified surface plasmons, which originate from the ordinary surface plasmons of a graphene-coated semiconductor nanowire, and (ii) spoof plasmons, which arise on the array of graphene ribbons and may possess forward-wave and backward-wave dispersion. It is revealed that the spoof surface plasmons are low-loss ones, and their frequencies, field-confinement, and group velocities can be tuned widely by adjusting the coil angle and width of the helical graphene strips.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate

Morteza Hajati and Yaser Hajati
J. Opt. Soc. Am. B 33(12) 2560-2565 (2016)

Analytical model for plasmon modes in graphene-coated nanowire

Yixiao Gao, Guobin Ren, Bofeng Zhu, Huaiqing Liu, Yudong Lian, and Shuisheng Jian
Opt. Express 22(20) 24322-24331 (2014)

Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù
Opt. Mater. Express 5(10) 2313-2329 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.