Abstract

We report a new extended coupled Lorentz oscillator (ECLO) model by adding a coupled phase factor for the first time, to the best of our knowledge, in contrast to the conventional coupled Lorentz oscillator (CLO) model for describing the analogue of electromagnetically induced transparency (EIT) in a dimer, which is composed of two identically broken eccentric silver nanorings (ESNRs) arranged in an asymmetric manner. Based on the finite element method, the distribution features of the absorption spectra, the charges, and the electric field of the ESNRs are numerically simulated under the action of the applied light field. The ECLO model reveals the physical mechanism of the spectra features and the EIT-like effect. Our findings indicate that the destructive interference effect plays a key role in the generation of the EIT-like effect. The theoretical analyses are in good agreement with the numerical results.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Bin Sun, Jian-Qiang Liu, and Shuang-Chun Wen
Opt. Express 24(16) 17886-17899 (2016)

Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions

Zhong-Jian Yang, Tomasz J. Antosiewicz, and Timur Shegai
Opt. Express 24(18) 20373-20381 (2016)

Dark dimer mode excitation and strong coupling with a nanorod dipole

Yixiao Gao, Ning Zhou, Zhangxing Shi, Xin Guo, and Limin Tong
Photon. Res. 6(9) 887-892 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription