Abstract

In this paper, we introduce the generalized design of nonmagnetic homogeneous polarization splitting devices (polarization deflector/lateral shifter) based on linear area-preserving transformations for an arbitrary incident angle. Also, by employing the Brewster angle condition, we derive a quadratic equation for principal values of the permittivity tensor that leads to the reflectionless splitting of two orthogonal polarizations for a normally impinging wave. The minimum in-plane anisotropy condition is then derived. The Brewster angle method offers significantly less anisotropy compared with the transformation optical design for larger deflection angles/lateral shifts in the normal incidence case. Finally, we show that, by using a uniaxial material (zero in-plane anisotropy), we can achieve similar functionality in the case of an obliquely incident wave. The proposed devices can separate the polarizations of the incident wave by creating a desired angle or lateral shift between TE and TM polarizations. The functionality of the proposed designs is confirmed by the commercial finite-element-based software COMSOL Multiphysics.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of reflectionless non-magnetic homogeneous polarization splitters with minimum anisotropy based on transformation electromagnetics

Hossein Eskandari, Mohammad Saeed Majedi, and Amir Reza Attari
J. Opt. Soc. Am. B 34(6) 1191-1198 (2017)

Design of electromagnetic refractor and phase transformer using coordinate transformation theory

Lan Lin, Wei Wang, Jianhua Cui, Chunlei Du, and Xiangang Luo
Opt. Express 16(10) 6815-6821 (2008)

Brewster angle with a negative-index material

Ceji Fu, Zhuomin M. Zhang, and Phillip N. First
Appl. Opt. 44(18) 3716-3724 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription