Abstract

A reflective broadband terahertz (THz) linear-to-circular (LTC) polarization converter based on a single-layer ultrathin metasurface is designed and experimentally demonstrated. Two different-size rectangular ultrathin metasurface micro-structures are proposed to realize such a broadband THz LTC polarization converter with bandwidth ranging from 0.832 to 1.036 THz. The phase delay between two orthogonal resonance modes is 90°±5°. These qualities are realized mainly by combining two separated LTC polarization conversion frequencies and the benefit of the coupling between two different-size rectangles. The calculated results indicate that the bandwidth of the LTC polarization converter is controlled via the dimensions and period of the structure. This kind of ultrathin broadband THz polarization converter can be widely applied into wireless communication, imaging, and detection, and can widen the path to designing novel functional THz devices.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies

Yannan Jiang, Lei Wang, Jiao Wang, Charles Nwakanma Akwuruoha, and Weiping Cao
Opt. Express 25(22) 27616-27623 (2017)

Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial

Jianfeng Zhu, Shufang Li, Li Deng, Chen Zhang, Yang Yang, and Hongbo Zhu
Opt. Mater. Express 8(5) 1164-1173 (2018)

Ultrathin flexible terahertz polarization converter based on metasurfaces

Weicheng Mo, Xuli Wei, Kejia Wang, Yao Li, and Jinsong Liu
Opt. Express 24(12) 13621-13627 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
    [Crossref]
  2. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Achromatic quarter-wave plate using crystalline quartz,” Appl. Opt. 51, 1976–1980 (2012).
    [Crossref]
  3. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18, 10137–10142 (2010).
    [Crossref]
  4. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
    [Crossref]
  5. Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
    [Crossref]
  6. Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102, 011129 (2013).
    [Crossref]
  7. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
    [Crossref]
  8. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
    [Crossref]
  9. Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D 47, 075107 (2014).
    [Crossref]
  10. C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
    [Crossref]
  11. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “Polarization rotation with ultra-thin bianisotropic metasurfaces,” Optica 3, 427–432 (2016).
    [Crossref]
  12. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
    [Crossref]
  13. H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
    [Crossref]
  14. J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
    [Crossref]
  15. J. Woo, S. Hussain, and J. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
    [Crossref]
  16. F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Teraherta polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24, 26431–26443 (2016).
    [Crossref]
  17. B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28, 124002 (2017).
    [Crossref]
  18. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
    [Crossref]
  19. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
    [Crossref]
  20. Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
    [Crossref]
  21. D. Y. Liu, M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, “Enhanced asymmetric transmission due to Fabry-Perot-like cavity,” Opt. Express 22, 11707–11712 (2014).
    [Crossref]
  22. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
    [Crossref]
  23. K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D 47, 505104 (2014).
    [Crossref]
  24. R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
    [Crossref]
  25. Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
    [Crossref]
  26. Z. Song, J. Zhu, C. Zhu, Z. Yu, and Q. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
    [Crossref]
  27. C. P. Huang, “Efficient and broadband polarization conversion with the coupled metasurfaces,” Opt. Express 23, 32015–32024 (2015).
    [Crossref]
  28. H. Cheng, J. Tian, J. Li, P. Yu, S. Chen, and W. Liu, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
    [Crossref]
  29. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [Crossref]
  30. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref]
  31. M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325  GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antennas Propag. 58, 2457–2459 (2010).
    [Crossref]
  32. D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
    [Crossref]
  33. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36, 2498–2500 (2011).
    [Crossref]
  34. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37, 1820–1822 (2012).
    [Crossref]
  35. D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar Babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
    [Crossref]
  36. D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
    [Crossref]
  37. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101, 023101 (2012).
    [Crossref]
  38. Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101, 201103 (2012).
    [Crossref]
  39. B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38, 679–681 (2013).
    [Crossref]
  40. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref]
  41. S. Jiang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).
    [Crossref]
  42. H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4, 1717–1724 (2014).
    [Crossref]
  43. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
    [Crossref]
  44. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27, 6630–6636 (2015).
    [Crossref]

2017 (2)

J. Woo, S. Hussain, and J. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28, 124002 (2017).
[Crossref]

2016 (4)

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
[Crossref]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “Polarization rotation with ultra-thin bianisotropic metasurfaces,” Optica 3, 427–432 (2016).
[Crossref]

F. Fan, S. T. Xu, X. H. Wang, and S. J. Chang, “Teraherta polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb,” Opt. Express 24, 26431–26443 (2016).
[Crossref]

2015 (9)

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar Babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
[Crossref]

H. Cheng, J. Tian, J. Li, P. Yu, S. Chen, and W. Liu, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
[Crossref]

C. P. Huang, “Efficient and broadband polarization conversion with the coupled metasurfaces,” Opt. Express 23, 32015–32024 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27, 6630–6636 (2015).
[Crossref]

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
[Crossref]

Z. Song, J. Zhu, C. Zhu, Z. Yu, and Q. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
[Crossref]

2014 (9)

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D 47, 075107 (2014).
[Crossref]

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D 47, 505104 (2014).
[Crossref]

S. Jiang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

D. Y. Liu, M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, “Enhanced asymmetric transmission due to Fabry-Perot-like cavity,” Opt. Express 22, 11707–11712 (2014).
[Crossref]

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4, 1717–1724 (2014).
[Crossref]

2013 (7)

B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38, 679–681 (2013).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
[Crossref]

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102, 011129 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
[Crossref]

2012 (6)

A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Achromatic quarter-wave plate using crystalline quartz,” Appl. Opt. 51, 1976–1980 (2012).
[Crossref]

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37, 1820–1822 (2012).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101, 023101 (2012).
[Crossref]

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101, 201103 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

2011 (2)

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
[Crossref]

E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36, 2498–2500 (2011).
[Crossref]

2010 (3)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[Crossref]

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325  GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antennas Propag. 58, 2457–2459 (2010).
[Crossref]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18, 10137–10142 (2010).
[Crossref]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

2006 (1)

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Bardou, N.

Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
[Crossref]

Beccherelli, R.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28, 124002 (2017).
[Crossref]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Bhattacharya, K.

Bouchon, P.

Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
[Crossref]

Bower, J. E.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
[Crossref]

Cahill, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325  GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antennas Propag. 58, 2457–2459 (2010).
[Crossref]

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[Crossref]

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
[Crossref]

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Carr, D. W.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
[Crossref]

Chakrabarty, A.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101, 023101 (2012).
[Crossref]

Chakraborty, A. K.

Chan, H. B.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
[Crossref]

Chang, S. J.

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Chen, S.

H. Cheng, J. Tian, J. Li, P. Yu, S. Chen, and W. Liu, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
[Crossref]

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
[Crossref]

Cheng, H.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
[Crossref]

H. Cheng, J. Tian, J. Li, P. Yu, S. Chen, and W. Liu, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Chiang, Y. J.

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102, 011129 (2013).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Cirelli, R. A.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
[Crossref]

Cong, L.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27, 6630–6636 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
[Crossref]

Crozier, K. B.

Cui, T. J.

Dalvit, D.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Dickie, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325  GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antennas Propag. 58, 2457–2459 (2010).
[Crossref]

Dong, J. F.

Drezet, A.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101, 201103 (2012).
[Crossref]

Ebbesen, T. W.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101, 201103 (2012).
[Crossref]

Euler, M.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325  GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antennas Propag. 58, 2457–2459 (2010).
[Crossref]

Fan, F.

Fan, R. H.

R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Fusco, V.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325  GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antennas Propag. 58, 2457–2459 (2010).
[Crossref]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Gajic, R.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28, 124002 (2017).
[Crossref]

Gallot, G.

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Genet, C.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101, 201103 (2012).
[Crossref]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Gong, Y. D.

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar Babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101, 201103 (2012).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Grbic, A.

Gu, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
[Crossref]

Gu, Y. H.

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar Babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
[Crossref]

Guo, L. J.

Han, J.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27, 6630–6636 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Headland, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Hong, M. H.

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar Babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
[Crossref]

Huang, C.

C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
[Crossref]

Huang, C. P.

Huang, X. R.

R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Hussain, S.

J. Woo, S. Hussain, and J. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

Isic, G.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28, 124002 (2017).
[Crossref]

Jaeck, J.

Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
[Crossref]

Jang, J.

J. Woo, S. Hussain, and J. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

Jian, L.

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Jiang, S.

S. Jiang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).
[Crossref]

Jiang, S. C.

R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Jiang, Y.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Jördens, C.

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Khoo, E. H.

Klemens, F.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
[Crossref]

Koch, M.

Kong, G. S.

Levesque, Q.

Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
[Crossref]

Li, E. P.

Li, J.

H. Cheng, J. Tian, J. Li, P. Yu, S. Chen, and W. Liu, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
[Crossref]

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
[Crossref]

C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
[Crossref]

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
[Crossref]

Li, M. H.

Li, T.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[Crossref]

Li, Z.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
[Crossref]

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D 47, 075107 (2014).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
[Crossref]

Lin, L.

Liu, D.

J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
[Crossref]

Liu, D. Y.

Liu, H.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[Crossref]

Liu, Q.

Z. Song, J. Zhu, C. Zhu, Z. Yu, and Q. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Liu, W.

H. Cheng, J. Tian, J. Li, P. Yu, S. Chen, and W. Liu, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
[Crossref]

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
[Crossref]

Liu, X.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
[Crossref]

Liu, Y.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D 47, 505104 (2014).
[Crossref]

Liu, Z.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
[Crossref]

Lombard, E.

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101, 201103 (2012).
[Crossref]

Luo, C.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D 47, 505104 (2014).
[Crossref]

Lv, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
[Crossref]

Ma, H. F.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4, 1717–1724 (2014).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
[Crossref]

Ma, X.

J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
[Crossref]

Makhsiyan, M.

Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
[Crossref]

Marcet, Z.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
[Crossref]

Masson, J. B.

Mehmood, M. Q.

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Minkowski, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101, 023101 (2012).
[Crossref]

Mutlu, M.

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D 47, 075107 (2014).
[Crossref]

Nie, Y.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Ozbay, E.

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D 47, 075107 (2014).
[Crossref]

Pardo, F.

Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
[Crossref]

Peng, R. W.

R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Pfeiffer, C.

Qiu, C. W.

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar Babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
[Crossref]

Ray, V.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Roberts, A.

Saha, A.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Scheller, M.

Shi, H.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Shi, J.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
[Crossref]

Singh, R.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27, 6630–6636 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
[Crossref]

Song, K.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D 47, 505104 (2014).
[Crossref]

Song, Z.

Z. Song, J. Zhu, C. Zhu, Z. Yu, and Q. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Srivastava, A.

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Sun, K.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101, 023101 (2012).
[Crossref]

Tang, J.

J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
[Crossref]

Taylor, A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Tian, J.

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
[Crossref]

Upadhyay, A.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Vasic, B.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28, 124002 (2017).
[Crossref]

Venkatesan, T.

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Wang, D. C.

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

D. C. Wang, Y. H. Gu, Y. D. Gong, C. W. Qiu, and M. H. Hong, “An ultrathin terahertz quarter-wave plate using planar Babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
[Crossref]

Wang, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101, 023101 (2012).
[Crossref]

Wang, G. Z.

Wang, Q.

C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
[Crossref]

Wang, S. M.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[Crossref]

Wang, X. H.

Wang, Z.

J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
[Crossref]

Wei, Q. H.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101, 023101 (2012).
[Crossref]

Withayachumnankul, W.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

Woo, J.

J. Woo, S. Hussain, and J. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Xiao, Z.

J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
[Crossref]

Xie, B.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
[Crossref]

Xiong, X.

R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Xu, K.

J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
[Crossref]

Xu, N.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27, 6630–6636 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Xu, S. T.

Yang, B.

Yao, L. F.

Ye, W. M.

Yen, T. J.

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102, 011129 (2013).
[Crossref]

Yin, X.

C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
[Crossref]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Yu, P.

H. Cheng, J. Tian, J. Li, P. Yu, S. Chen, and W. Liu, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185–3188 (2015).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
[Crossref]

Yu, S.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
[Crossref]

Yu, Z.

Z. Song, J. Zhu, C. Zhu, Z. Yu, and Q. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Yuan, X. D.

Zeng, C.

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Zhai, X. M.

Zhang, A.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Zhang, C.

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zhang, L. C.

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

Zhang, W.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27, 6630–6636 (2015).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
[Crossref]

Zhang, Y.

C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zhao, X.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D 47, 505104 (2014).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Zheng, S.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Zhou, Y.

R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Zhu, C.

Z. Song, J. Zhu, C. Zhu, Z. Yu, and Q. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Zhu, J.

Z. Song, J. Zhu, C. Zhu, Z. Yu, and Q. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Zhu, S. N.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[Crossref]

Zhu, Y.

C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
[Crossref]

Zhu, Z.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
[Crossref]

Zhu, Z. H.

Zografopoulos, D. C.

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28, 124002 (2017).
[Crossref]

Adv. Mater. (2)

R. W. Peng, R. H. Fan, Y. Zhou, S. C. Jiang, X. Xiong, and X. R. Huang, “Freely-tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27, 6630–6636 (2015).
[Crossref]

Adv. Opt. Mater. (1)

C. Huang, Q. Wang, X. Yin, Y. Zhang, J. Li, and Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2, 723–728 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (11)

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, and H. F. Ma, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102, 191905 (2013).
[Crossref]

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104, 034102 (2014).
[Crossref]

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[Crossref]

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, and F. Klemens, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98, 151107 (2011).
[Crossref]

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102, 011129 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, and Z. Li, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103, 223102 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, and R. Singh, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
[Crossref]

Q. Levesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, and N. Bardou, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104, 111105 (2014).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, and R. Z. Gong, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014).
[Crossref]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101, 023101 (2012).
[Crossref]

Y. Gorodetski, E. Lombard, A. Drezet, C. Genet, and T. W. Ebbesen, “A perfect plasmonic quarter-wave plate,” Appl. Phys. Lett. 101, 201103 (2012).
[Crossref]

IEEE Photon. J. (1)

D. C. Wang, L. C. Zhang, Y. D. Gong, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Multiband switchable quarter-wave plates via phase-change metasurface,” IEEE Photon. J. 8, 5500308 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325  GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antennas Propag. 58, 2457–2459 (2010).
[Crossref]

J. Phys. D (2)

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D 47, 505104 (2014).
[Crossref]

Z. Li, M. Mutlu, and E. Ozbay, “Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials,” J. Phys. D 47, 075107 (2014).
[Crossref]

Laser Photon. Rev. (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Mater. Lett. (1)

Z. Song, J. Zhu, C. Zhu, Z. Yu, and Q. Liu, “Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays,” Mater. Lett. 159, 269–272 (2015).
[Crossref]

Nano Lett. (1)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Nanotechnology (1)

B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28, 124002 (2017).
[Crossref]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. Express (1)

Opt. Quantum. Electron. (1)

J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, “Cross polarization conversion based on a new chiral spiral slot structure in THz region,” Opt. Quantum. Electron. 48, 1–11 (2016).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, and X. Zhang, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110, 207401 (2013).
[Crossref]

Phys. Rev. X (1)

S. Jiang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4, 021026 (2014).
[Crossref]

Plasmonics (1)

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, and J. Li, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10, 1703–1711 (2015).
[Crossref]

Sci. Rep. (2)

D. C. Wang, L. C. Zhang, Y. H. Gu, M. Q. Mehmood, Y. D. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. H. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref]

J. Woo, S. Hussain, and J. Jang, “A terahertz in-line polarization converter based on through-via connected double layer slot structures,” Sci. Rep. 7, 42952 (2017).
[Crossref]

Science (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. Taylor, D. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, and V. Saile, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic of the broadband THz polarization converter. (b) The corresponding unit cell. The normal incident THz wave is polarized at θ=45° toward the x axis.
Fig. 2.
Fig. 2. (a) SEM of the fabricated structure. (b) Experimental setup.
Fig. 3.
Fig. 3. Simulated and measured results of the broadband THz LTC polarization converter: the reflection coefficients of (a) simulations and (b) measurements; phase delay between two orthogonal components of (c) simulations and (d) measurements.
Fig. 4.
Fig. 4. (a) Simulated and (b) measured ellipticity.
Fig. 5.
Fig. 5. Normalized wavefront trajectory curves of the reflected waves at 0.84, 0.9, 0.96, and 1.02 THz.
Fig. 6.
Fig. 6. Electric field distribution for two orthogonal polarized waves at (a) 0.856 THz, (b) 0.936 THz, and (c) 1.0 THz.
Fig. 7.
Fig. 7. (a) Phase delay and (b) ellipticity for different h1. (c)–(g) The normalized wavefront trajectories for different h1 at f=1.0  THz with the corresponding phase delay [between these two orthogonal electric fields (Ex and Ey)] shown at points A, B, C, D, and E in (a).
Fig. 8.
Fig. 8. (a) Phase delay and (b) ellipticity for different h2. (c)–(g) The normalized wavefront trajectories for different h2 at f=0.856  THz with the corresponding phase delay [between these two orthogonal electric fields (Ex and Ey)] shown at points A, B, C, D, and E in (a).
Fig. 9.
Fig. 9. Phase delay (a) and ellipticity (b) for different thickness of polyimide film.
Fig. 10.
Fig. 10. (a) Phase delay and (b) ellipticity for different periods with size-variational rectangular patterns. L1=0.49Px, h1=0.42Px, L2=0.64Px, h2=0.67Px, and Py=2Px.
Fig. 11.
Fig. 11. (a) Phase delay and (b) ellipticity for different period with size-fixed rectangular patterns. L1=56.8  μm, h1=49  μm, L2=74.9  μm, h2=78  μm, and Py=2Px. Inset is the schematic of the THz polarization converter. The centers of the large and small rectangles are located in (0, py/4) and (0, py/4), respectively. The black dots in the inset represent the centers of the rectangles.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S0=|r˜x|2+|r˜y|2,S1=|r˜x|2|r˜y|2,S2=2|r˜xr˜y|cos(ϕd),S3=2|r˜xr˜y|sin(ϕd),
x2a2+y2b22xycos(ϕd)ab=sin2(ϕd),